Gray Farm Stream Restoration Monitoring Report – Year Four

Contract # D05016-2 EEP Project # 92219

Iredell County, North Carolina

December 2009

Cataloging Unit – Catawba Basin 03050101

Prepared For:

1652 Mail Service Center Raleigh, NC 27699-1652

Table of Contents

I. Exec	cutive Summary / Project Abstract1
II. Pro	ject Background2
1.	Project Goals and Objectives2
2.	Project Structure, Restoration Type, and Approach 4
3.	Location and Setting
4.	Project History and Background
5.	Monitoring Plan View
III. Pr	oject Condition and Monitoring Results9
А.	Vegetation Assessment9
1.	Problem Areas Plan View (Vegetation)12
2.	Vegetative Problem Areas Table Summary13
3.	Vegetative Problem Areas Plan View13
B. Stre	eam Assessment
1.	Problem Areas Plan View (Stream)14
2.	Problem Areas Table Summary14
3.	Numbered Issues Photo Section15
4.	Fixed Photo Station Photos15
5.	Stability Assessment15
6.	Quantitative Measures Summary Tables16
7.	Benthic Macroinvertebrate Assessment 21
IV. M	ethodology Section

Tables

Exhibit Table I.	Project Restoration Components
Exhibit Table II.	Project Activity and Reporting History
Exhibit Table III.	Project Contact Table7
Exhibit Table IV.	Project Background Table7
Exhibit Table V.	Verification of Bankfull Events
Exhibit Table VII.	Categorical Stream Feature Visual Stability Assessment 15
Exhibit Table VIII.	Baseline Morphology and Hydraulic Summary17
Exhibit Table IX.	Morphology and Hydraulic Monitoring Summary19

Figure 1 - Project Vicinity Map

Appendix A - Vegetation Raw Data

- 1. Vegetation Survey Data Tables (V-1 V-5)
- 2. Vegetation Problem Area Table (A1)
- 3. Vegetation Problem Area Photos
- 4. Vegetation Monitoring Plot Photos

Appendix B - Geomorphologic Raw Data

- 1. Bankfull Events
- 2. Stream Problem Area Table (B1)
- 3. Representative Stream Problem Area Photos
- 4. Stream Photo-Station Photos
- 5. Exhibit Table B2 Qualitative Visual Stability Assessment
- 6. Annual Overlays of Cross Section Plots
- 7. Annual Overlays of Longitudinal Plots
- 8. Annual Overlays of Pebble Count Frequency Distribution Plots

Appendix C - Benthic Macroinvertebrate Assessment Data

Appendix D - Integrated Problem Area Plan View

- 1. Monitoring and Problem Area Plan View, Reach 1
- 2. Monitoring and Problem Area Plan View, Reach 2

I. Executive Summary / Project Abstract

The Gray Farm Stream Restoration project consists of two separate stream reaches (Reach 1 and Reach 2) along unnamed tributaries of Buffalo Shoals Creek, a tributary of the Catawba River (Cataloging Unit 03050101). The site is located approximately 10 miles due west of the City of Statesville in western Iredell County, NC. This restoration was contracted by Restoration Systems LLC (Contract # D05016-2) as a full-delivery project for the North Carolina Ecosystem Enhancement Program (NCEEP). This report summarizes the monitoring efforts for Year 4 (2009) of the Gray Farm Stream Restoration Project.

Restoration construction of Reach 2 began in early March 2006 and was completed in mid-April 2006. Restoration construction of Reach 1 began in mid-April 2006 and was completed in early July 2006. Demobilization and minor contractor punch list items were completed shortly thereafter. Installation of monitoring devices and As-built surveys for both reaches were performed as construction progressed.

Year 4 monitoring of the vegetated buffer was performed by Soil & Environmental Consultants, PA (S&EC) in the fall of 2009. Stem counts were performed within the established vegetation monitoring plots, resulting in an average live stem density of approximately 418 stems per acre.

Physical monitoring of the restored channels for Year 4 was also performed by S&EC and consisted of the collection of cross-section and representative longitudinal profile data, in conjunction with visual stability assessment of the stream. This work was performed in the fall of 2009. Collected data was then compared with As-built, Year 1, Year 2, and Year 3 Monitoring data.

Based on Year 4 Monitoring results, the overall site has met the prescribed success criteria. Detailed analysis of the success of localized areas is discussed within.

Year 5 Monitoring will commence in January of 2010.

II. Project Background

The Gray Farm Stream Restoration project is located in the Catawba River Basin within Hydrologic Cataloging Unit 03050101. The site consists of two separate reaches (Reach 1 and Reach 2) along unnamed tributaries of Buffalo Shoals Creek, a tributary of the Catawba River. The site is located approximately 10 miles due west of the City of Statesville in western Iredell County, NC.

The restoration project objective was to restore the impaired streams to appropriately sized stream channels that were stable and self-maintaining, and would not aggrade or degrade over time. Restoration was accomplished with Rosgen-based natural channel design procedures and techniques. Reach 1 restoration was a combination of a Priority I (reconnection of the channel with its historic floodplain) restoration and a Priority II (construction of a new floodplain at a lower elevation) restoration. Reach 2 was a Priority I restoration. Restoring an appropriate sinuosity lengthened both channels, thereby lowering their bankfull slopes.

Restoration construction of Reach 2 began in early March 2006 and was completed in mid-April 2006. Restoration construction of Reach 1 began in mid-April 2006 and was completed in early July 2006. The buffers of both reaches of the restored stream channel were planted with native tree and shrub species and seeded with a native grass seed mix. During construction, site topography and grading allowed for the creation of vernal pools, oxbows, or pocket wetlands within the riparian zone along the restored stream reaches. Planting operations were performed in April 2006. Supplemental planting was performed in December of 2006.

Demobilization and minor contractor punch list items were completed shortly after the completion of construction. Installation of monitoring devices and As-built surveys for both reaches were performed as construction progressed.

1. Project Goals and Objectives

The goals of the Gray Farm Stream Restoration project are:

- 1) Improve local water quality within the restored channel reaches as well as the downstream watercourses through;
 - a. The reduction of current channel and off site sediment loads by restoring appropriately sized channels with stable beds and banks.
 - b. The reduction of nutrient loads (both soil enhancement practices and cattle) from adjacent agricultural fields with a restored riparian buffer.
 - c. The reduction of water temperatures provided by shading of the channel from canopy species along with the resultant increase in oxygen content.

- 2) Improve local aquatic and terrestrial habitat and diversity within the restored channels and their vicinity through;
 - a. The formation of varying bed form within the channels to provide for fish, amphibian, and benthic species.
 - b. The restoration of a suitable riparian buffer corridor which will provide both vertical and horizontal structure and connectivity with adjacent upland areas.
 - c. The restoration of understory and canopy species which will provide forage, cover, and nesting for a variety of mammals, reptiles, and birds.
- 3) Improve local watershed conditions through the restoration of two low order streams (one first order, one second order) and the placement of permanent conservation easements.

Through the restoration process the following objectives were accomplished:

- 1) Restore approximately 7,610 linear feet of appropriately sized stream channel that is stable and self-maintaining, and will not aggrade or degrade over time. Restoration was accomplished with Rosgen-based natural channel design procedures and techniques.
- 2) Develop restored channels with the appropriate morphological characteristics (cross-sectional dimension, pattern, and longitudinal profile) utilizing collected reference reach data as a guide. Allow for no net loss of overall channel length in the process.
- 3) Create and/or improve bed form diversity (riffles, runs, pools, and glides) and improve aquatic and benthic macroinvertebrate habitat.
- 4) Construct a floodplain (or local bankfull bench) that is accessible at the proposed bankfull channel elevation.
- 5) Ensure channel and stream bank stabilization by integrating in-stream structures and native bank vegetation.
- 6) Establish a native forested and herbaceous riverine buffer plant community within a minimum width of 50 feet from the edge of the restored channel. This new community will be established in conjunction with the eradication of any existing exotic and/or undesirable plant species.
- 7) Improve water quality within the subject channels and the downstream receiving waters.

8) Supplement the education and conservation efforts for natural resources in Iredell County as indicated in program goals for the local Soil & Water Conservation District and the NC Cooperative Extension Service.

2. Project Structure, Restoration Type, and Approach

The restoration project was intended to restore the impaired streams to appropriately sized stream channels that are stable and self-maintaining, and will not aggrade or degrade over time. Restoration was accomplished with Rosgenbased natural channel design procedures and techniques. Restoring an appropriate sinuosity lengthened both channels, thereby lowering their bankfull slope. A total of 8,004 linear feet of stream channel was restored onsite (8,004 SMU's).

Reach 1

Reach 1 restoration was a combination of a Priority I restoration (reconnection of the channel with its historic floodplain) and a Priority II restoration (construction of a new floodplain at a lower elevation). Reach 1 consists of 5,813 linear feet (5,813 SMU's) of restored Type C4 channel. Approximately 800 linear feet of this length was previously inundated by an existing farm pond that was removed during the channel restoration. The pre-restoration length of this channel segment was approximately 4,340 linear feet.

One additional piped farm road crossing previously existed approximately 700 feet downstream of an existing dam and farm pond near the upper end of Reach 1. This piped crossing was removed and replaced with an at-grade in-stream crossing. Immediately downstream of the dam for a distance of approximately 1,000 feet, severe bank erosion, channel incision, and an over-widening of the stream channel had occurred. This degradation appeared in large part due to previous uncontrolled releases from the existing dam spillway.

The lower two thirds of the reach were characterized by overly steep and undercut banks. Significant localized erosion had occurred along this lower portion. Trees of large diameter lined the banks, many of which were undercut, suspended, or had collapsed into the stream. The channel had down cut and over widened in many locations along the reach allowing no access to its floodplain. The last 200 feet (approximately) of the pre-existing channel was not down cut due to a change in surrounding topography.

Reach 2

Reach 2 was a Priority I restoration. Reach 2 consists of 2,191 linear feet (2,191 SMU's) of restored Type B4 channel. A small impoundment previously existed near the lower end of the reach; however, it was drained and removed a number of years prior to the channel restoration. A piped farm road crossing existed at roughly the same location (the old dam embankment). This was (and remains) the

only existing crossing along the reach. The pre-restoration length of this channel segment was approximately 1,600 linear feet.

Throughout Reach 2, severe bank erosion, channel incision, and an over-widening of the stream channel had occurred. This impairment appeared in large part due to previous uncontrolled grazing operations. The reach was characterized by overly steep, sloughing, and undercut banks.

Significant localized erosion had occurred along the entire reach. Trees of large diameter lined the banks, many of which were undercut, suspended, or collapsed into the stream. The channel had down cut and over widened in many places along the reach allowing no access to its floodplain.

3. Location and Setting

The Gray Farm Stream Restoration project is located in the Catawba River Basin, Cataloguing Unit 03050101. The site consists of two separate reaches (Reach 1 and Reach 2) along unnamed tributaries of Buffalo Shoals Creek, a tributary of the Catawba River. The site is located approximately 10 miles due west of the City of Statesville in western Iredell County, NC.

Reach 1 is located immediately north of Bolick Road (SR 1532). Reach 2 is located immediately west of the intersection of New Sterling Road (SR 1525) and Gray House Road. The watershed areas for Reaches 1 and 2 are estimated at approximately 0.91 square miles (582 acres) and 0.085 square miles (54 acres) respectively. See attached Figure 1.

4. Project History and Background

					•		omponents oject # 92219		1
Project Segment or Reach ID	Existing Feet/Acres	Type	Approach	Footage or Acreage	Mitigation Ratio	Mitigation Units	Stationing		Comment
Reach I	3,000	R	PI	4,119	1:1	4,119	0+00 to 41+	19	
Reach I	1,340	R	PII	1,694	1:1	1,694	41+19 to 58+	-13	
Reach II	1,600	R	PI	2,191	1:1	2,191	0+00 to 21+9	91	
Mitigation Un	it Summ	ations							
Stream (lf)	Ripa Wetlan	arian ad (Ac)		riparian and (Ac)		Wetland Ac)	Buffer (Ac)	С	omment
8,004									

The following tables summarize the project history and background:

Exhibit Table II. Project Activity and Reporting History Gray Farm Stream Restoration Site/EEP Project # 92219						
Activity or Report	Data Collection Complete	Actual Completion or Delivery				
Restoration Plan	Aug-05	Nov-05				
Construction	Reach 1	Jul-06				
	Reach 2	Apr-06				
Temporary S&E mix applied to entire project area	Apr-06	Apr-06				
Permanent seed mix applied to reach/segments 1 & 2	Apr-06	Apr-06				
Plantings for reach/segments 1 & 2	Apr-06	Apr-06				
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	May-06	Jun-06				
Year 1 Monitoring	Dec-06	Dec-06				
Supplemental Planting	Dec-06					
Year 2 Monitoring	Nov-07	Dec-07				
Year 3 Monitoring	Nov-08	Dec-08				
Year 4 Monitoring	Nov-09	Dec-09				
Year 5 Monitoring						

E	xhibit Table III. Project Contact Table			
Gray Farm	Stream Restoration Site/EEP Project # 92219			
Designer	Soil & Environmental Consultants, PA			
Primary Project Design POC	11010 Raven Ridge Rd			
	Raleigh, NC 27614			
	Patrick K. Smith, P.E. (919) 846-5900			
Construction Contractor	North State Environmental			
Construction Contractor POC	2889 Lowery St.			
	Winston-Salem, NC 27101			
	Darrell Westmoreland (336) 725-2010			
Planting Contractor	North State Environmental			
Planting Contractor POC	2889 Lowery St.			
	Winston-Salem, NC 27101			
	Darrell Westmoreland (336) 725-2010			
Seeding Contractor	North State Environmental			
Seeding Contractor POC	2889 Lowery St.			
-	Winston-Salem, NC 27101			
	Darrell Westmoreland (336) 725-2010			
Monitoring Performers	Soil & Environmental Consultants, PA			
	11010 Raven Ridge Rd.			
	Raleigh, NC 2761			
Stream Monitoring POC	David Gainey (919) 846-5900			
Vegetation Monitoring POC	David Gainey (919) 846-5900			

Exhibit Table IV. Project Background Table Gray Farm Stream Restoration Site/EEP Project # 92219					
Project County	Iredell				
Drainage area	Reach 1 - 0.91 square miles (582 acres)				
	Reach 2 - 0.085 square miles (54 acres)				
Drainage impervious cover estimate (%)	< 20%				
Stream Order	Reach 1 - 2nd order				
	Reach 2 - 1st order				
Physiographic Region	Piedmont				
Ecoregion	Northern Inner Piedmont				
Rosgen Classification of As-built	Reach 1 - C4				
	Reach 2 - B4				
Cowardin Classification	N/A				
Dominant soil types	Reach 1 - Cw, CxB				
	Reach 2 - CsE2				
Reference site ID	Reach 1 - Tributary of Turkey Creek				
	Reach 2 - Basin Creek				
USGS HUC for Project and Reference	3050101				
NCDWQ Sub-basin for Project and Reference	Reach 1 - 03-08-32 / 03-04-02				
	Reach 2 - 03-08-32 / 03-07-01				
NCDWQ classification for Project and Reference	Reach 1 - WS-IV; CA / C;NSW				
	Reach 2 - WS-IV; CA / C; Tr; ORW				
Any portion of any project segment 303d listed?	No				
Any portion of any project segment upstream of a 303d					
listed segment?	No				
Reasons for 303d listing or stressor	N/A				
% of project easement fenced	Reach 1 – No Fence, Reach 2 - 100%				

5. Monitoring Plan View

Six (6) tree and shrub buffer vegetation plots (four (4) on Reach 1 and two (2) on Reach 2) and four (4) bank vegetation plots (two (2) on Reach 1 and two (2) on Reach 2) were established. All vegetation monitoring occurs within these plots throughout the monitoring period for as long as they continue to be representative of the community.

For all buffer monitoring plots, Level 1 of the Carolina Vegetation Survey-Ecosystem Enhancement Program (CVS-EEP) Protocol for Recording Vegetation was utilized for vegetation sampling in Years 1 and 2. Beginning in Year 3, Level 2 of the CVS-EEP protocol was utilized in order to record and report woody plant volunteers within vegetation monitoring plots along with planted stems. A corner of each vegetation monitoring plot will be used as a permanent photo point for vegetation monitoring photos. Locations of these photo points are shown on the attached Monitoring Plan View.

Benthic macroinvertebrate sampling was performed at a total of five (5) previously established sampling stations. Reach 1, Station 1 is located immediately upstream of the restored Reach 1. Reach 1, Station 2 is located within the restored Reach 1. Reach 1, Station 3 is located immediately downstream of the restored Reach 1. Reach 2, Station 1 is located within the restored Reach 2. Reach 2, station 2 is located immediately downstream of the restored Reach 1. Reach 2, Station 1 is located within the restored Reach 2. Reach 2, station 2 is located immediately downstream of the restored Reach 2. Locations of these benthic macroinvertebrate sampling points for Year 3 are shown in Appendix D.1. Benthic macroinvertebrate sampling was performed during Monitoring Years 1 through 3.

A total of seven (7) nested riffle and pool cross-section pairs was established along Reach 1, and two (2) nested riffle and pool cross-section pairs were established along Reach 2. Each cross-section also serves as a designated photo point that is photographed annually.

The locations of all monitoring devices are shown in Appendix D.1 (Monitoring Plan View, Reaches 1 and 2).

III. Project Condition and Monitoring Results

A. Vegetation Assessment

The success of the adjacent riparian buffer will be based on the combined survival of tree and shrub species for the five-year monitoring period.

In order to be considered successful, survival of woody (tree and shrub) species planted within the restored buffers will be at least 320 stems/acre through year three, 288 stems/acre at year four, and 260 stems/acre at year five. The stem count will be based on an average of the stem counts of the evaluated tree and shrub buffer vegetation plots.

The success of the bank vegetation plots along the restored channels will be based on the survival of live stake (or other) bank plantings for the five-year monitoring period. Survival of bank plantings will be based on a linear average of approximately 50 percent of the planted stems within the restoration reaches.

The approximately 18.4 acre restoration area was planted with various native hardwood tree and shrub species native to the area. Reaches 1 and 2 were planted in April 2006. Supplemental planting was performed in December of 2006.

The following tree species were planted in the Riparian Buffer Area:

- Alnus serrulata (Tag Alder)
- Betula nigra (River Birch)
- *Carpinus caroliniana* (Ironwood)
- Fraxinus pennsylvanica (Green Ash)
- *Ilex opaca* (American Holly)
- *Lindera benzoin* (Spicebush)
- *Liriodendron tulipifera* (Tulip Poplar)
- Platanus occidentalis (Sycamore)
- *Quercus michauxii* (Swamp Chestnut Oak)
- *Quercus nigra* (Water Oak)
- *Quercus phellos* (Willow Oak)
- *Viburnum nudum* (Possumhaw)

Stream banks were planted with live stakes in two offset rows. The following shrub species were planted as live stakes:

- Cornus amomum (Silky Dogwood)
- Salix sericea (Silky Willow)
- Sambucus canadensis (Elderberry)

As previously described, a total of six (6) buffer vegetation monitoring plots was established on-site in 2006. The success criteria for the site require a minimum of 288 live stems per acre through the first four (4) years of monitoring. Year 4 vegetation monitoring shows 418 live stems per acre. Year 5 buffer vegetation monitoring data will be compared with previous monitoring data to determine survival rates and stem densities for woody vegetation planted within the riparian buffer. Vegetation monitoring data for buffer plots was collected using Level 2 of the CVS-EEP monitoring protocol and is presented in Appendix A.

NOTE: Level 2 of the CVS-EEP monitoring protocol includes both planted and natural (volunteer) woody stems. For this reason, volunteer specimens are included in the total number of species, as reflected in Tables V-2 through V-4. Table V-5 (Stem Count by Plot and Species) does not include volunteer/natural woody stem data, only planted stems.

Four (4) bank vegetation plots were also established (two on each reach) to monitor survival of live stake plantings along stream banks. Live stake survival is based on baseline data collected during Year 1 Monitoring in 2006. Future bank vegetation monitoring data will be compared with previous monitoring data to determine survival rates for live stakes planted along stream banks. Live stake survival from Monitoring Year 1 to Monitoring Year 4 for the site overall is approximately 85.9%, an increase from the Year 3 live stake survival percentage. This increase in live stake survival can be attributed to the resprouting of Silky Dogwood in Reach 1 Bank Plot 2.

	2000	6 - REACH 1	•		
Common Name	Species	REA	CH 1	Species Total	% of Total
		BANK 1	BANK 2		
Silky Dogwood	Cornus amomum	12	17	29	39%
Silky Willow	Salix sericea	30	16	46	61%
	TOTAL	42	33	75	100%
	200'	7 - REACH 1	l		
Common Name Species REACH 1 Species				Species Total	% of Total
		BANK 1	BANK 2		
Silky Dogwood	Cornus amomum	4	9	13	27%
Silky Willow	Salix sericea	27	9	36	73%
	TOTAL	31	18	49	100%
	Live Stake Survival =	73.8%	54.5%	65.3%	
	2008	8 - REACH 1	l		
Common Name	Species	REA	CH 1	Species Total	% of Total
		BANK 1	BANK 2		
Silky Dogwood	Cornus amomum	10	9	19	36%
Silky Willow	Salix sericea	30	4	34	64%
	TOTAL	40	13	53	100%
	Live Stake Survival =	95.2%	39.4%	70.7%	

Live stake counts by species and by plot are presented in the following tables:

	2009 - REACH 1							
Common Name Species REACH 1 Species Total % of Tota								
		BANK 1	BANK 2					
Silky Dogwood	Cornus amomum	10	9	19	32%			
Silky Willow	Salix sericea	30	10	40	68%			
	TOTAL	40	19	59	100%			
	Live Stake Survival =	95.2%	57.6%	78.7%				

	2006	- REACH 2			
Common Name	Species	REA	CH 2	Species Total	% of Total
		BANK 1	BANK 2		
Silky Willow	Salix sericea	7	4	11	23%
Silky Dogwood	Cornus amomum	9	25	34	72%
Elderberry	Sambucus canadensis	0	2	2	4%
	TOTAL	16	31	47	100%
	2007	- REACH 2			
Common Name	Species	REA	CH 2	Species Total	% of Total
		BANK 1	BANK 2		
Silky Willow	Salix sericea	6	4	10	29%
Silky Dogwood	Cornus amomum	5	20	25	71%
Elderberry	Sambucus canadensis	0	0	0	0%
	TOTAL	11	24	35	100%
	Live Stake Survival =	68.8%	77.4%	74.5%	
	2008	- REACH 2			
Common Name	Species	REACH 2		Species Total	% of Total
		BANK 1	BANK 2		
Silky Willow	Salix sericea	7	4	11	24%
Silky Dogwood	Cornus amomum	8	25	33	73%
Elderberry	Sambucus canadensis	0	1	1	2%
	TOTAL	15	30	45	100%
	Live Stake Survival =	93.8%	96.8%	95.7%	
	2009	- REACH 2			
Common Name	Species	REA	CH 2	Species Total	% of Total
		BANK 1	BANK 2		
Silky Willow	Salix sericea	7	4	11	24%
Silky Dogwood	Cornus amomum	8	25	33	73%
Elderberry	Sambucus canadensis	0	1	1	2%
•	TOTAL	15	30	45	100%
	Live Stake Survival =	93.8%	96.8%	95.7%	

The increase from Year 3 to Year 4 in number of Silky Dogwood counted within Reach 1 Bank Plot 2 is most likely due to the less dense herbaceous vegetation in this area during Year 4, which allowed live stakes to grow or re-

sprout and facilitated observation of these stems. Most surviving live stakes appear healthy and are growing vigorously.

Herbaceous vegetation varies widely throughout the restoration site. The native herbaceous species have become densely established and are dominant throughout the site. Herbaceous species observed along stream banks and in the buffer and wetlands onsite include:

- Jewelweed Impatiens capensis
- Soft Rush Juncus effusus
- Cutgrass Leersia oryzoides
- Monkeyflower *Mimulus ringens*
- Sedges *Carex spp*.
- Switchgrass Panicum virgatum
- Duck Potato Sagittaria latifolia
- Goldenrod *Solidago sp.*
- Dog-fennel Eupatorium capillifolium
- Boneset *Eupatorium perfoliatum*

1. Problem Areas Plan View (Vegetation)

During field inspections on October 27th-29th and November 5th, 2009, a total of six (6) localized areas of bare bank and floodplain were observed on Reach 1. These areas appear to be due primarily to either surface flows or poor soil conditions. Continued revegetation of previously bare areas was observed during Monitoring Year 4, especially within Reach 2. Vegetation Problem Areas are shown on Sheets 6 through 9 (Reach 1). Photos are included in Appendix A.

During Monitoring Year 2, small amounts of the non-natives Johnsongrass (*Sorghum halepense*) and tall fescue (*Lolium arundinaceum*) were observed at the edges of the buffer restoration areas that border the agricultural fields on both reaches. These populations have not become dominant, nor have they excluded native vegetation.

An area of Kudzu (*Pueraria lobata*) was noted at the site in early June 2007, on the west side of Reach 1 between stations 16+00 to 19+00. Although the majority of the Kudzu was along and in the edge of the woods immediately outside the easement area, some had encroached into the easement area. The area (approximately 0.5 acre) was treated with the herbicide Transline (clopyralid) at a rate of one pint per acre in 2007. A small portion of this area was again treated in 2008. During 2008, a small area (approximately 0.009 acre) of Kudzu was observed immediately east of station 13+00, within the easement area. During 2009, two very small areas of kudzu (totaling approximately 350 sq. feet) was treated with Transline (clopyralid) in the upper part of Reach 1. These areas will be monitored and treated if Kudzu continues to encroach into the easement area.

While we will continue to monitor these areas, based on vegetative success criteria the overall site currently exhibits strong vegetative success.

2. Vegetative Problem Areas Table Summary

Vegetative problem areas observed are described in Table A1 in Appendix A.

3. Vegetative Problem Areas Plan View

Vegetative problem areas are shown on Sheets 6 through 9 for Reach 1 (Problem Area Plan View). No vegetative problem areas were noted on Reach 2.

B. Stream Assessment

A review of available on-line U.S. Geological Survey (USGS) gauge sites was performed to determine if a suitable surrogate gauges was present in the area. No nearby gauge was identified. The closest USGS gauge to the site was on the Lower Little River (near Healing Springs, NC, Gauge Identification Number 02142000) which is approximately 15 miles from the project site. Based on this large distance, significant disparity in watershed sizes, and topographic variation, it is unlikely that a conclusive determination regarding the number of bankfull events experienced on the restoration site could be made.

Based upon recommendations provided by NCEEP a crest gauge was installed on site (at Cross-section 3 on Reach 1). The gauge was installed in June of 2008 and checked during subsequent site visits for evidence of bankfull events. In addition, site observations during visits performed this monitoring year including wrack lines, staining of vegetation, displaced/flattened vegetation, and observable sediment deposition indicate that multiple overbank events have occurred. Photographs documenting overbank conditions during Monitoring Year 4 are attached in Appendix B. The dates of site visits where evidence of bankfull events were observed are listed in the table below.

Exhibit Table V. Verification of Bankfull Events Gray Farm Stream Restoration Site/EEP Project # 92219								
Date of Data Collection	Date of Occurrence	Method	Photo #					
10/27/2009	Unknown	Onsite observations (wrack lines, staining of vegetation, displaced/flattened vegetation, and observable sediment deposition and select crest gauge readings)	1					
11/11/2009	11/11/2009	Observation of bankfull event – Reach 1	2					
11/11/2009	11/11/2009	Observation of bankfull event – Reach 2	3					

1. Problem Areas Plan View (Stream)

An assessment of channel stability was performed on October 27th, 2009. Areas of concern that were observed and documented included some minor localized bank scour, buried structures, stressed structures, and a single beaver dam. Detail of scour is evident in cross-section 6 (pool). These problem areas are shown on Sheets 6 through 9 for Reach 1 and Sheets 14 through 16 for Reach 2 (Problem Area Plan View). One stressed log J-hook structure at station 41+50 on Reach 1 will need to be repaired and stabilized to fill a scour area behind the structure. With the exception of this structure, the minimal extent of scour and erosion around structures does not warrant repair at this time.

The beaver dam noted on October 27, 2009 at station 56+40 within Reach 1 had raised the water level in the stream to approximately station 53+00, and structures between these two stations were entirely submerged. In order to preserve the restored physical parameters of Reach 1, beavers and their dams will need to be removed from this area.

The upper portion of Reach 1 has demonstrated pool development since the as-built survey. Significant sediment entered the pools at the upper end of Reach 1 shortly after construction. This sediment came from upstream sources to the north of the restoration site including areas of cattle pasture and areas previously inundated due to the old pond. This sediment was flushed from the system during the first year, causing these pools to deepen to their previously excavated depth. During Monitoring Year 3, sediment from the upstream cattle pasture again entered the upper portion of Reach 1. Based on the Year 4 assessment, this sedimentation has continued and increased during the last year. The area between station 0+00 and station 5+20 contains significant sediment, pools have filled, and structures have been buried. From station 5+20 to station 9+50, sediment is present, but less severe, and the riffle-pool sequence is more easily observed. It is important to note that the cattle pasture north of the restoration site is not under the ownership of the Grays.

The above-mentioned structure will be repaired and beavers removed from Reach 1. Other areas will continue to be monitored to ensure that the site continues to exhibit stable conditions and meet the requirements for physical success based on physical success criteria.

2. Problem Areas Table Summary

Stream problem areas observed are shown in Table B1 in Appendix B.

3. Numbered Issues Photo Section

Representative photos of each category of stream problem area are shown in Appendix B.

4. Fixed Photo Station Photos

Photos from established photo stations (at each cross-section) were collected during the stream survey (October 27-29 and November 5, 2009). These photos are included in Appendix B.

5. Stability Assessment

A visual qualitative assessment was performed to inspect channel facets, meanders, bed, banks, and installed structures. This visual assessment was confirmed and enhanced with a quantitative assessment of the physical stream survey. The goal of this assessment is to provide a percentage of the features listed in Table VII that are in a state of stability. Table VII was compiled from the data in Table B1 in Appendix B of this report.

Table VIIa: Categorical Stream Feature Visual Stability AssessmentGray Farm Stream and Wetland Restoration Site/EEP Project # 92219Reach 1								
Feature	MY-1 2006	MY-2 2007	MY-3 2008	MY-4 2009	MY-5 2010			
A. Riffles	100%	100%	98%	100%				
B. Pools	100%	100%	100%	99%				
C. Thalweg	99%	99%	99%	99%				
D. Meanders	100%	100%	100%	99%				
E. Bed General	96%	99%	99%	99%				
F. Bank Condition	100%	99%	99%	99%				
G. Vanes/ J Hooks, etc.	99%	98%	98%	98%				
H. Wads and Boulders	N/A	N/A	N/A	N/A				

Table VIIb: Categorical Stream Feature Visual Stability AssessmentGray Farm Stream and Wetland Restoration Site/EEP Project # 92219Reach 2								
Feature	MY-1 2006	MY-2 2007	MY-3 2008	MY-4 2009	MY-5 2010			
A. Riffles	100%	100%	100%	100%				
B. Pools	100%	100%	100%	100%				
C. Thalweg	100%	100%	100%	100%				
D. Meanders	99%	98%	98%	97%				
E. Bed General	100%	100%	100%	99%				
F. Bank Condition	100%	100%	99%	100%				
G. Vanes/ J Hooks, etc.	99%	96%	95%	96%				
H. Wads and Boulders	N/A	N/A	N/A	N/A				

6. Quantitative Measures Summary Tables

The following tables (Table VIII and Table IX) summarize the quantitative data collected from the cross-sectional and representative longitudinal stream survey. These data were analyzed and summarized, and then compared with baseline data available for this project.

The Quantitative Morphology Tables illustrate the degree of departure, if any, of the current channel from the baseline data. Tables VIII and IX were compiled from the cross-section and profile raw data and plots located in Appendix B of this report.

				VIII. Base RM STRE	AM REST	ORATIO						
Parameter	Pre-F	xisting Cor	dition	Project	Reference	EACH 1 Stream		Design			As-built	
	THE L	xisting cor	luition	Tiojeet	Reference	Stream		Design			713 built	
Dimension	Min	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.
BF Width (ft)	15.77	15.77	15.77	32.08	32.08	32.08	15.2	15.2	15.2	13.62	19.48	16.02
Floodprone Width (ft)	19.41	52.54	20.39		100		47	90.34	47	37.49	89.67	61.53
BF Cross Sectional Area (ft ²)	17.87	17.87	17.87	79.79	79.79	79.79	17.84	17.84	17.84	11.01	17.92	13.79
BF Mean Depth (ft)	1.13	1.13	1.13	2.49	2.49	2.49	1.17	1.17	1.17	0.7	0.94	0.86
BF Max Depth (ft)	1.49	1.49	1.49	3.61	3.61	3.61	1.71	1.71	1.71	1.36	2.04	1.61
Width/Depth Ratio	13.96	13.96	13.96	12.43	12.43	12.43	12.67	12.67	12.67	18.63	20.07	19.46
Entrenchment Ratio	1.29	1.29	1.29	3.47	3.47	3.47	3.09	3.09	3.09	2.75	4.6	3.84
Wetted Perimeter(ft)	16.52	16.52	16.52	34.8	34.8	34.8	16.01	16.01	16.01	13.26	16.41	15.67
Hydraulic radius (ft)		1.08			2.29			1.11		0.69	0.92	0.83
Pattern												
Channel Beltwidth (ft)	67.62	137.29	98.27	70.8	91.93	84.35	26.1	61.8	40.75	59.32	93.89	72.85
Radius of Curvature (ft)	64.8	121.04	81.58	13.36	36.57	26.56	19.97	37.85	28.23	16.64	40.88	25.73
Meander Wavelength (ft)	716.91	716.91	716.91	148.13	291.09	221.56	77.08	117.13	95.07	77.08	117.13	94.8
Meander Width ratio	4.29	8.71	6.23	2.21	2.87	2.63	1.72	4.07	2.68	3.7	5.86	4.55
Profile					10.05	10.00						27.05
Riffle length (ft) Riffle slope (ft/ft)	N/A	N/A	N/A	32.94	48.35	40.29	19.31	54.86 0.0057	30.86	25.87	54.2	37.85 0.0062
Pool length (ft)	0.00632 93.8	0.00657 159.47	0.00647 119.6	0.00809 8.96	0.01395 41.09	0.01074 26.43	22.9	33.17	29.66	0.00092	0.0187 244.47	23.01
Pool Slope (ft/ft)	93.8 N/A	N/A	N/A	8.90 N/A	41.09 N/A	20.43 N/A	0.0009	0.0029	0.0013	0.0007	0.0064	0.0016
Pool spacing (ft)	347.07	525.3	444	44.08	130.73	67.98	51.66	82.92	67.79	12.35	142	70.94
Substrate												
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Additional Reach Parameters		4050.0			646.25			4050.0			4050.0	
Valley Length (ft)		4258.3		[648.35			4258.3			4258.3	
Channel Length (ft)		4939.628			758.58			5622			5813.3	
Sinuosity Water Surface		1.16			1.17			1.29			1.36	
Slope (ft/ft)		0.00647			0.01074			0.0057			0.00544	
BF slope (ft/ft)		0.00647			0.01074			0.0057			0.00544	
Rosgen Classification		F4			C4			C4			C4	
*Habitat Index		N/A			N/A			N/A			N/A	
*Macrobenthos	N/A N/A				N/A			N/A			N/A	

1

					AM REST	ORATION	nd Hydrau SITE (EE					
Parameter	Dro E	xisting Cor	dition	Droioo	R Reference	EACH 2		Design			As-built	
	FIC-L	Aisting Col	luition	FIOJEC	Reference	Sucalli		Design			AS-Duilt	
Dimension	Min	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.	Min	Max	Avg.
BF Width (ft)	5.34	5.34	5.34	4.86	4.86	4.86	6.9	6.9	6.9	7.38	8.21	7.8
Floodprone Width (ft)	7.04	7.04	7.04	8.73	8.73	8.73	12.4	12.4	12.4	13.96	39.05	26.53
BF Cross Sectional Area (ft ²)	3.88	3.88	3.88	1.94	1.94	1.94	3.96	3.96	3.96	4.14	6.77	5.46
BF Mean Depth (ft)	0.73	0.73	0.73	0.4	0.4	0.4	0.57	0.57	0.57	0.56	0.82	0.69
BF Max Depth (ft)	1.13	1.13	1.13	0.61	0.61	0.61	0.87	0.87	0.87	0.86	1.3	1.08
Width/Depth Ratio	7.32	7.32	7.32	12.15	12.15	12.15	12.11	12.11	12.11	1.01	13.18	11.3
Entrenchment Ratio	1.32	1.32	1.32	1.8	1.8	1.8	1.8	1.8	1.8	1.9	4.7	3.4
Wetted Perimeter(ft)	6.03	6.03	6.03	5.28	5.28	5.28	7.36	7.36	7.36	7.68	8.77	8.23
Hydraulic radius (ft)		0.64			0.37	8	0.94737	0.94737	0.94737	0.78261	1.11594	0.95652
Pattern												
Channel Beltwidth (ft)	43.58	68.11	54.22	6.97	22.7	13.32	9.49	16.5	12.65	11.83	22.05	16.96
Radius of Curvature (ft)	32.54	52.64	41.25	4.1	8.88	5.93	6.71	9.9	8.05	4.63	9.1	6.43
Meander Wavelength (ft)	209.46	394.66	334.46	22.47	68.78	46.57	31.6	37.12	34.08	27.51	34.72	31.75
Meander Width ratio	8.16	12.75	10.15	1.43	4.67	2.74	1.38	2.39	1.83	1.52	2.83	2.17
Profile												
Riffle length (ft)	N/A	N/A	N/A	5.52	7.6	6.39	4.93	7.24	5.88	3.36	11.6	5.6
Riffle slope (ft/ft)	0.0179	0.03688	0.02444	0.03022	0.05058	0.04025		0.0258		0.0053	0.0555	0.0279
Pool length (ft)	26.27	54.41	40.34	7.56	10.65	8.78	6.25	10.46	8.45	5.2	10.08	7.59
Pool Slope (ft/ft)	N/A	N/A	N/A	N/A	N/A	N/A	0.0017	0.0087	0.003	0.001	0.0092	0.0022
Pool spacing (ft) Substrate	125.7	474.65	265.15	20.17	70.04	46.72	15.73	23.84	19.22	9.43	28.94	19.51
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Additional Reach Parameters												
Valley Length (ft)		1872			216.55			1872			1872	
Channel Length (ft)		1965.6			266.36			2114			2191	
Sinuosity		1.05			1.23			1.16			1.2	
Water Surface Slope (ft/ft)		0.0286			0.039			0.0258			0.025	
BF slope (ft/ft) Rosgen		0.0286 G4			0.039 B4			0.0258 B4			0.025 B4	
Classification *Habitat Index		N/A			N/A			N/A			N/A	
*Macrobenthos		N/A			N/A			N/A			N/A	

Parameter	REACH 1		RIFFLE 1			I		POOL 1			1		RIFFLE 2			I		POOL 2		
			KIFFLE I					FOOLI					KIFFLE 2					FOOL 2		
Dimension	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY
	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009	2006	2006	2007	2008	200
BF Width (ft)	15.34	11.25	11.58	10.89	8.76	22.32	20.84	24.21	20.82	21.89	13.62	11.33	13.59	14.78	12.48	20.84	20.41	21.64	19.85	20.0
oodprone Width (fi	54.53	50	50	50	50.86	61.28	62.34	62.25	62.65	63.15	59.9	60.26	60.01	59.8	59.91	57.43	58.07	54.82	57.47	57.9
3F Cross Sectional	11.97	5.96	6.46	5.98	4.19	39.71	41.33	35.99	36.03	42.12	11.01	9.18	9.27	9.23	8.5	29.04	26.98	28.27	27.23	27.5
Area (ft ²)																				
BF Mean Depth (ft)	0.78	0.53	0.56	0.55	0.48	1.78	1.98	1.56	1.73	1.92	0.81	0.68	0.68	0.62	0.68	1.39	1.32	1.31	1.37	1.3
BF Max Depth (ft)	1.39	0.87	1	1.26	1.18	3.29	3.47	3.5	3.58	3.68	1.53	1.25	1.46	1.6	1.79	2.89	2.74	3.5	3.04	3.3
Width/Depth Ratio	19.67	21.23	20.68	19.8	18.25	12.54	10.53	14.79	12.03	11.4	16.81	19.94	19.99	23.84	18.35	14.99	15.46	16.52	14.49	14.6
Entrenchment Ratio	3.56	4.44	4.32	4.59	5.81	2.75	2.99	2.7	3.01	2.88	4.4	4.45	4.41	4.05	4.8	2.76	2.85	2.67	2.89	2.8
Vetted Perimeter(ft)	15.67	11.41	11.77	11.21	9.67	23.83	22.42	24.22	22.41	25.69	13.97	13.82	14.04	15.21	13.52	21.83	21.52	23.58	22.24	23.
Hydraulic radius (ft)	0.76	0.52	0.55	0.53	0.43	1.67	1.84	1.49	1.61	1.64	0.79	0.66	0.66	0.61	0.63	1.33	1.25	1.2	1.22	0.7
Substrate d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/.
d30 (mm) d84 (mm)	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/
Parameter	REACH 1	N/A	IVA	IVA	IVA	1011	1011		IVA	10/A	N/A	MA	NA	WA	N/A	N/A	N/A	N/A		10
	REACH 1	WA	RIFFLE 3	iva	ivA	1071	1071	POOL 3	iva	IV/A	N/A	INA	RIFFLE 4	iv/A	MA	N/A	N/A	POOL 4		14
	REACH 1	WA		iva	iva	1011	1011		iva	WA	INA	ina		IVA	IV/A		N/A		1011	147
	REACH 1 AS BUILT	MY1		MY3	MY4	AS BUILT	MY1		MY3	MY4	AS BUILT	MY1		MY3	MY4	AS BUILT	MY1		MY3	
Parameter			RIFFLE 3					POOL 3					RIFFLE 4					POOL 4		МҮ
Parameter Dimension BF Width (ft)	AS BUILT	MY1	RIFFLE 3 MY2	MY3	MY4	AS BUILT	MY1	POOL 3 MY2	MY3	MY4	AS BUILT	MY1 2006 19	RIFFLE 4 MY2	MY3	MY4	AS BUILT	MY1	POOL 4 MY2	MY3	MY 200
Parameter Dimension BF Width (ft) oodprone Width (ft)	AS BUILT 2006 12.94 89.67	MY1 2006 12.1 89.64	RIFFLE 3 MY2 2007 13.55 89.86	MY3 2008 12.89 89.54	MY4 2009 13.37 89.77	AS BUILT 2006 20.75 61.38	MY1 2006 21.49 61.32	POOL 3 MY2 2007 22.08 61.04	MY3 2008 21.98 61.15	MY4 2009 21.66 61.39	AS BUILT 2006 15.7 66.39	MY1 2006 19 66.2	RIFFLE 4 MY2 2007 17.9 66.27	MY3 2008 18.01 66.51	MY4 2009 18.49 66.39	AS BUILT 2006 20.28 65.77	MY1 2006 21.29 65.75	POOL 4 MY2 2007 20.2 66	MY3 2008 19.85 65.83	MY 200 20.1 65.9
Parameter Dimension BF Width (ft) oodprone Width (ft BF Cross Sectional	AS BUILT 2006 12.94	MY1 2006 12.1	RIFFLE 3 MY2 2007 13.55	MY3 2008 12.89	MY4 2009 13.37	AS BUILT 2006 20.75	MY1 2006 21.49	POOL 3 MY2 2007 22.08	MY3 2008 21.98	MY4 2009 21.66	AS BUILT 2006 15.7	MY1 2006 19	RIFFLE 4 MY2 2007 17.9	MY3 2008 18.01	MY4 2009 18.49	AS BUILT 2006 20.28	MY1 2006 21.29	POOL 4 MY2 2007 20.2	MY3 2008 19.85	MY 200 20.
Parameter Dimension BF Width (ft) oodprone Width (ft BF Cross Sectional Area (ft ²)	AS BUILT 2006 12.94 89.67 9.49	MY1 2006 12.1 89.64 9.25	RIFFLE 3 MY2 2007 13.55 89.86 10.46	MY3 2008 12.89 89.54 9.82	MY4 2009 13.37 89.77 10.62	AS BUILT 2006 20.75 61.38 34.09	MY1 2006 21.49 61.32 33.59	POOL 3 MY2 2007 22.08 61.04 32.19	MY3 2008 21.98 61.15 31.82	MY4 2009 21.66 61.39 33.75	AS BUILT 2006 15.7 66.39 11.02	MY1 2006 19 66.2 13.49	RIFFLE 4 MY2 2007 17.9 66.27 11.8	MY3 2008 18.01 66.51 11.58	MY4 2009 18.49 66.39 13.39	AS BUILT 2006 20.28 65.77 32.64	MY1 2006 21.29 65.75 38.77	POOL 4 MY2 2007 20.2 66 32.03	MY3 2008 19.85 65.83 33.03	MY 200 20.1 65.5 33.1
Parameter Dimension BF Width (ft) oodprone Width (ft BF Cross Sectional Area (ft ²) 3F Mean Depth (ft)	AS BUILT 2006 12.94 89.67 9.49 0.73	MY1 2006 12.1 89.64 9.25 0.76	RIFFLE 3 MY2 2007 13.55 89.86 10.46 0.77	MY3 2008 12.89 89.54 9.82 0.76	MY4 2009 13.37 89.77 10.62 0.79	AS BUILT 2006 20.75 61.38 34.09 1.64	MY1 2006 21.49 61.32 33.59 1.56	POOL 3 MY2 2007 22.08 61.04 32.19 1.46	MY3 2008 21.98 61.15 31.82 1.45	MY4 2009 21.66 61.39 33.75 1.56	AS BUILT 2006 15.7 66.39 11.02 0.7	MY1 2006 19 66.2 13.49 0.71	RIFFLE 4 MY2 2007 17.9 66.27 11.8 0.66	MY3 2008 18.01 66.51 11.58 0.64	MY4 2009 18.49 66.39 13.39 0.72	AS BUILT 2006 20.28 65.77 32.64 1.61	MY1 2006 21.29 65.75 38.77 1.82	POOL 4 MY2 2007 20.2 66 32.03 1.59	MY3 2008 19.85 65.83 33.03 1.66	MY 200 20. 65.9 33.
Parameter Dimension BF Width (f) oodprone Width (f) BF Cross Sectional Area (ft ²) FF Mean Depth (ft) BF Max Depth (ft)	AS BUILT 2006 12.94 89.67 9.49 0.73 1.41	MY1 2006 12.1 89.64 9.25 0.76 1.36	RIFFLE 3 MY2 2007 13.55 89.86 10.46 0.77 1.47	MY3 2008 12.89 89.54 9.82 0.76 1.44	MY4 2009 13.37 89.77 10.62 0.79 1.61	AS BUILT 2006 20.75 61.38 34.09 1.64 3.03	MY1 2006 21.49 61.32 33.59 1.56 2.83	POOL 3 MY2 2007 22.08 61.04 32.19 1.46 2.94	MY3 2008 21.98 61.15 31.82 1.45 2.78	MY4 2009 21.66 61.39 33.75 1.56 2.99	AS BUILT 2006 15.7 66.39 11.02 0.7 1.36	MY1 2006 19 66.2 13.49 0.71 1.41	RIFFLE 4 MY2 2007 17.9 66.27 11.8 0.66 1.3	MY3 2008 18.01 66.51 11.58 0.64 1.37	MY4 2009 18.49 66.39 13.39 0.72 1.41	AS BUILT 2006 20.28 65.77 32.64 1.61 2.79	MY1 2006 21.29 65.75 38.77 1.82 3.2	POOL 4 MY2 2007 20.2 66 32.03 1.59 2.83	MY3 2008 19.85 65.83 33.03 1.66 2.83	MY 200 20. 33. 1.6 3.0
Parameter Dimension BF Width (ft) oodprone Width (ft 3F Cross Sectional Area (ft ²) 3F Mean Depth (ft) Width/Depth Ratio	AS BUILT 2006 12.94 89.67 9.49 0.73 1.41 17.73	MY1 2006 12.1 89.64 9.25 0.76 1.36 15.92	RIFFLE 3 MY2 2007 13.55 89.86 10.46 	MY3 2008 12.89 89.54 9.82 0.76 1.44 16.96	MY4 2009 13.37 89.77 10.62 0.79 1.61 16.92	AS BUILT 2006 20.75 61.38 34.09 1.64 3.03 12.65	MY1 2006 21.49 61.32 33.59 1.56 2.83 13.78	POOL 3 MY2 2007 22.08 61.04 32.19 1.46 2.94 15.12	MY3 2008 21.98 61.15 31.82 1.45 2.78 15.16	MY4 2009 21.66 61.39 33.75 1.56 2.99 13.88	AS BUILT 2006 15.7 66.39 11.02 0.7 1.36 22.43	MY1 2006 19 66.2 13.49 0.71 1.41 26.76	RIFFLE 4 MY2 2007 17.9 66.27 11.8 0.66 1.3 27.12	MY3 2008 18.01 66.51 11.58 0.64 1.37 28.14	MY4 2009 18.49 66.39 13.39 0.72 1.41 25.68	AS BUILT 2006 20.28 65.77 32.64 1.61 2.79 12.6	MY1 2006 21.29 65.75 38.77 1.82 3.2 11.79	POOL 4 MY2 2007 20.2 66 32.03 1.59 2.83 12.7	MY3 2008 19.85 65.83 33.03 1.66 2.83 11.96	MY 200 20. 65. 33. 1.6 3.0 12.
Parameter Dimension BF Width (ft) oodprone Width (ft) BF Cross Sectional Area (ft ²) IF Mean Depth (ft) JF Max Depth (ft) intenchment Ratio	AS BUILT 2006 12.94 89.67 9.49 0.73 1.41 17.73 6.93	MY1 2006 12.1 89.64 9.25 0.76 1.36 15.92 7.41	RIFFLE 3 MY2 2007 13.55 89.86 10.46 0.77 1.47 1.7.6 6.63	MY3 2008 12.89 89.54 9.82 0.76 1.44 16.96 6.94	MY4 2009 13.37 89.77 10.62 0.79 1.61 16.92 6.71	AS BUILT 2006 20.75 61.38 34.09 1.64 3.03 12.65 2.96	MY1 2006 21.49 61.32 33.59 1.56 2.83 13.78 2.85	POOL 3 MY2 2007 22.08 61.04 32.19 1.46 2.94 15.12 2.76	MY3 2008 21.98 61.15 31.82 1.45 2.78 15.16 2.78	MY4 2009 21.66 61.39 33.75 1.56 2.99 13.88 2.83	AS BUILT 2006 15.7 66.39 11.02 0.7 1.36 22.43 4.23	MY1 2006 19 66.2 13.49 0.71 1.41 26.76 3.48	RIFFLE 4 MY2 2007 17.9 66.27 11.8 0.66 1.3 27.12 3.7	MY3 2008 18.01 66.51 11.58 0.64 1.37 28.14 3.69	MY4 2009 18.49 66.39 13.39 0.72 1.41 25.68 3.59	AS BUILT 2006 20.28 65.77 32.64 1.61 2.79 12.6 3.24	MY1 2006 21.29 65.75 38.77 1.82 3.2 11.79 3.09	POOL 4 MY2 2007 20.2 66 32.03 1.59 2.83 12.7 3.27	MY3 2008 19.85 65.83 33.03 1.66 2.83 11.96 3.32	MY 200 20. 65.9 33. 1.6 3.0 12.; 3.2
Parameter Dimension BF Width (ft) outprone Width (ft Ff Cross Sectional Area (ft ²) F Mean Depth (ft) FF Max Depth (ft) Vidth/Depth Ration anterachmetar Ratio tetted Perimeter(ft etted Perimeter(ft	AS BUILT 2006 12.94 89.67 9.49 0.73 1.41 17.73 6.93 13.26	MY1 2006 12.1 89.64 9.25 0.76 1.36 15.92 7.41 12.46	RIFFLE 3 MY2 2007 13.55 89.86 10.46 0.77 1.47 17.6 6.63 13.92	MY3 2008 12.89 89.54 9.82 0.76 1.44 16.96 6.94 13.27	MY4 2009 13.37 89.77 10.62 0.79 1.61 16.92 6.71 13.97	AS BUILT 2006 20.75 61.38 34.09 1.64 3.03 12.65 2.96 21.78	MY1 2006 21.49 61.32 33.59 1.56 2.83 13.78 2.85 22.45	POOL 3 MY2 2007 22.08 61.04 32.19 1.46 2.94 15.12 2.76 23.01	MY3 2008 21.98 61.15 31.82 1.45 2.78 15.16 2.78 22.94	MY4 2009 21.66 61.39 33.75 1.56 2.99 13.88 2.83 22.79	AS BUILT 2006 15.7 66.39 11.02 0.7 1.36 22.43 4.23 16.01	MY1 2006 19 66.2 13.49 0.71 1.41 26.76 3.48 19.29	RIFFLE 4 MY2 2007 17.9 66.27 11.8 0.66 1.3 27.12 3.7 18.22	MY3 2008 18.01 66.51 11.58 0.64 1.37 28.14 3.69 18.39	MY4 2009 18.49 66.39 13.39 0.72 1.41 25.68 3.59 19.13	AS BUILT 2006 20.28 65.77 32.64 1.61 2.79 12.6 3.24 21.59	MY1 2006 21.29 65.75 38.77 1.82 3.2 11.79 3.09 22.97	POOL 4 MY2 2007 20.2 66 32.03 1.59 2.83 12.7 3.27 21.45	MY3 2008 19.85 65.83 33.03 1.66 2.83 11.96 3.32 21.21	MY 200 20. 65.9 33. 1.6 3.0 12.3 3.2 22.2
Parameter Dimension BF Width (ft) coodprone Width (ft) SF Cross Sectional Area (ft ²) IF Mean Depth (ft) JF Max Depth (ft) Width/Depth Ratio Intrenchment Ratio Vidth/Depth Ratio Catter of the section of the section of the Vidth/Depth Ratio	AS BUILT 2006 12.94 89.67 9.49 0.73 1.41 17.73 6.93	MY1 2006 12.1 89.64 9.25 0.76 1.36 15.92 7.41	RIFFLE 3 MY2 2007 13.55 89.86 10.46 0.77 1.47 1.7.6 6.63	MY3 2008 12.89 89.54 9.82 0.76 1.44 16.96 6.94	MY4 2009 13.37 89.77 10.62 0.79 1.61 16.92 6.71	AS BUILT 2006 20.75 61.38 34.09 1.64 3.03 12.65 2.96	MY1 2006 21.49 61.32 33.59 1.56 2.83 13.78 2.85	POOL 3 MY2 2007 22.08 61.04 32.19 1.46 2.94 15.12 2.76	MY3 2008 21.98 61.15 31.82 1.45 2.78 15.16 2.78	MY4 2009 21.66 61.39 33.75 1.56 2.99 13.88 2.83	AS BUILT 2006 15.7 66.39 11.02 0.7 1.36 22.43 4.23	MY1 2006 19 66.2 13.49 0.71 1.41 26.76 3.48	RIFFLE 4 MY2 2007 17.9 66.27 11.8 0.66 1.3 27.12 3.7	MY3 2008 18.01 66.51 11.58 0.64 1.37 28.14 3.69	MY4 2009 18.49 66.39 13.39 0.72 1.41 25.68 3.59	AS BUILT 2006 20.28 65.77 32.64 1.61 2.79 12.6 3.24	MY1 2006 21.29 65.75 38.77 1.82 3.2 11.79 3.09	POOL 4 MY2 2007 20.2 66 32.03 1.59 2.83 12.7 3.27	MY3 2008 19.85 65.83 33.03 1.66 2.83 11.96 3.32	MY 200 20.
Parameter Dimension BF Width (ft) oodprone Width (ft 3F Cross Sectional Area (ft ²) 3F Mean Depth (ft)	AS BUILT 2006 12.94 89.67 9.49 0.73 1.41 17.73 6.93 13.26	MY1 2006 12.1 89.64 9.25 0.76 1.36 15.92 7.41 12.46	RIFFLE 3 MY2 2007 13.55 89.86 10.46 0.77 1.47 17.6 6.63 13.92	MY3 2008 12.89 89.54 9.82 0.76 1.44 16.96 6.94 13.27	MY4 2009 13.37 89.77 10.62 0.79 1.61 16.92 6.71 13.97	AS BUILT 2006 20.75 61.38 34.09 1.64 3.03 12.65 2.96 21.78	MY1 2006 21.49 61.32 33.59 1.56 2.83 13.78 2.85 22.45	POOL 3 MY2 2007 22.08 61.04 32.19 1.46 2.94 15.12 2.76 23.01	MY3 2008 21.98 61.15 31.82 1.45 2.78 15.16 2.78 22.94	MY4 2009 21.66 61.39 33.75 1.56 2.99 13.88 2.83 22.79	AS BUILT 2006 15.7 66.39 11.02 0.7 1.36 22.43 4.23 16.01	MY1 2006 19 66.2 13.49 0.71 1.41 26.76 3.48 19.29	RIFFLE 4 MY2 2007 17.9 66.27 11.8 0.66 1.3 27.12 3.7 18.22	MY3 2008 18.01 66.51 11.58 0.64 1.37 28.14 3.69 18.39	MY4 2009 18.49 66.39 13.39 0.72 1.41 25.68 3.59 19.13	AS BUILT 2006 20.28 65.77 32.64 1.61 2.79 12.6 3.24 21.59	MY1 2006 21.29 65.75 38.77 1.82 3.2 11.79 3.09 22.97	POOL 4 MY2 2007 20.2 66 32.03 1.59 2.83 12.7 3.27 21.45	MY3 2008 19.85 65.83 33.03 1.66 2.83 11.96 3.32 21.21	MY 200 20. 65.9 33. 1.6 3.0 12.3 3.2 22.2

rarameter	KEAUH I																			
			RIFFLE 5					POOL 5					RIFFLE 6					POOL 6		
Dimension	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4
	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009
BF Width (ft)	15.63	14.32	16.03	13.84	15.92	26.27	23.03	26.67	24.07	24.14	17.01	14.54	20.16	19.03	16.48	18.59	21.11	19.69	22.85	19.25
loodprone Width (ft)	72.27	64.56	73.17	72.59	72.68	68.23	68.53	68.67	68.48	68.73	50.57	60	60	49.29	48.65	60.15	62.76	63	66.56	67.18
BF Cross Sectional	14.76	14.03	15.16	13.33	14.29	37.47	33.39	37.64	35.95	35.15	16	14.61	16.36	12.89	11.82	26.72	27.06	51.7	53	53.19
Area (ft ²)																				
BF Mean Depth (ft)	0.94	0.98	0.95	0.96	0.9	1.43	1.45	1.41	1.49	1.46	0.94	1.01	0.81	0.68	0.72	1.44	1.28	2.63	2.32	2.76
BF Max Depth (ft)	1.67	2.27	1.92	1.99	1.93	2.75	3.08	3.35	3.23	3.27	1.56	1.49	1.43	1.31	1.24	2.83	3.14	4.82	4.71	4.98
Width/Depth Ratio	16.63	14.61	16.87	14.42	17.69	18.37	15.88	18.91	16.15	16.53	18.1	14.4	24.89	27.99	22.89	12.91	16.49	7.49	9.85	6.97
Entrenchment Ratio	4.62	4.51	4.56	5.24	4.56	2.6	2.98	2.57	2.85	2.85	2.97	4.13	2.98	2.59	2.95	3.24	2.97	3.2	2.91	3.49
Wetted Perimeter(ft)	16.14	15.28	17.15	14.88	17.12	27.26	24.24	28	25.72	26.13	17.42	15	20.56	19.32	17.4	20.27	22.27	23.49	27.89	25.01
Hydraulic radius (ft)	0.91	0.92	0.88	0.9	0.84	1.37	1.38	1.34	1.4	1.35	0.92	0.97	0.8	0.67	0.68	1.32	1.21	2.2	1.9	2.13
Substrate																				
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Parameter	REACH 1									
			RIFFLE 7					POOL 7		
Dimension	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4
	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009
BF Width (ft)	19.48	16.96	22.43	19.14	21.34	22.66	22.31	23.12	22.38	23.96
Floodprone Width (ft)	50	50	50	50	50	51.23	55	55	51	47.21
BF Cross Sectional Area (ft ²)	17.92	15.49	16.94	15.82	17.57	42.08	38.22	36.39	35.4	35.15
BF Mean Depth (ft)	0.92	0.91	0.76	0.83	0.82	1.86	1.71	1.57	1.58	1.47
BF Max Depth (ft)	2.04	1.61	1.68	1.76	1.93	3.47	3.06	3.03	2.91	2.76
Width/Depth Ratio	21.17	18.64	29.51	23.06	26.02	12.18	13.03	14.73	14.16	16.3
Entrenchment Ratio	2.57	2.95	2.23	2.61	2.343	2.26	2.46	2.38	2.28	1.97
Wetted Perimeter(ft)	20.08	17.38	22.83	19.59	22.11	23.91	24.11	24.31	23.66	25.89
Hydraulic radius (ft)	0.89	0.89	0.74	0.81	0.79	1.76	1.59	1.5	1.5	1.36
Substrate										
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Parameter		As-built (2006	i)	N	AY-1 (2006	5)	N	MY-2 (2007	7)	N	IY-3 (2008)	N	AY-4 (2009)
Pattern	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Channel Beltwidth (ft	59.32	93.89	72.85	58.48	96.38	71.67	58.96	97.33	72.54	54.62	96.02	72.76	52.64	93.42	69.44
Radius of Curvature (ft)	16.64	40.88	25.73	16.84	39.51	24.43	16.72	40.02	25.69	18.06	41.31	29.62	14.21	38.24	22.46
Meander Wavelength (ft)	77.08	117.13	94.8	76.54	118.26	91.85	75.94	120.96	92.17	81.64	125.68	102.42	86.25	127.4	107.22
Meander Width ratio	3.85	5.86	4.74	3.83	5.91	4.59	3.80	6.05	4.61	4.08	6.28	5.12	4.31	6.37	5.36
Profile															
Riffle length (ft)	25.87	54.2	37.85	19.31	54.86	30.86	22.15	58.62	34.61	17.03	56.21	34.53	20.37	73.65	37.06
Riffle slope (ft/ft)	0.00092	0.0187	0.0062	0.00125	0.01763	0.00883	0.0017	0.025	0.009	0.00115	0.033	0.01196	0.00223	0.03447	0.01102
Pool length (ft)	14.33	32.54	23.01	14.19	31.92	24.11	15.64	34.81	26.84	15.44	56.25	32.43	16.73	52.88	29.44
Pool Slope (ft/ft)	0.0007	0.0064	0.0016	0.0007	0.0029	0.0012	0.0007	0.004	0.0017	0.0007	0.0033	0.0013	0	0.00212	0.00042
Pool spacing (ft)	12.35	142	70.94	13.24	159	74.52	12.46	148	72.69	14.2	172.7	88.45	10.82	125.17	69.28
Additional Reach Parameters															
Valley Length (ft)		4258.3			4258.3			4258.3			4258.3			4258.3	
Channel Length (ft)		5813.3			5813.3			5813.3			5813.3			5813.3	
Sinuosity		1.36			1.36			1.36			1.36			1.36	
Water Surface Slope (ft/ft)		0.00544			0.00544			0.00544			0.00544			0.00544	
BF slope (ft/ft)		0.00544			0.00544			0.00544			0.00544			0.00544	
Rosgen Classification		C4			C4			C4			C4			C4	
Habitat Index*		N/A			N/A			N/A			N/A			N/A	
Macrobenthos*		N/A			N/A			N/A			N/A			N/A	

Parameter	REACH 2																			
			RIFFLE 1					POOL 1					RIFFLE 2					POOL 2		
			-	r					r										r	-
Dimension	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4	AS BUILT	MY1	MY2	MY3	MY4
	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009	2006	2006	2007	2008	2009
BF Width (ft)	7.38	7.61	10.66	8.67	11.12	18.44	17.46	22.47	20.95	21.52	8.21	7.6	9.16	8.98	8.85	5.98	6.17	5.56	3.56	5.03
Floodprone Width (ft)	23.08	26.25	29.56	25.54	30.39	46.7	46.7	46.7	46.78	46.62	39.05	26.17	26	40.5	41.9	15.65	10.59	10.84	10.93	13.37
BF Cross Sectional Area (ft ²)	4.14	4.65	5.33	4.74	6.02	19.78	18.94	23.35	21.96	21.12	6.77	4.86	7.71	6.71	6.42	6.89	4.93	5.82	3.92	5.79
BF Mean Depth (ft)	0.56	0.61	0.5	0.55	0.54	1.07	1.09	1.04	1.05	0.98	0.82	0.64	0.84	0.75	0.73	1.15	0.8	1.05	1.1	1.15
BF Max Depth (ft)	0.86	0.98	1	0.94	1.11	2.6	2.64	2.63	2.58	2.47	1.3	1.19	1.47	1.23	1.3	1.81	1.49	1.54	1.63	1.66
Width/Depth Ratio	13.18	12.48	13.5	15.76	20.59	17.23	16.02	21.61	19.95	21.96	10.01	11.88	10.9	11.97	12.12	5.2	7.71	5.3	3.24	4.37
Entrenchment Ratio	3.13	1.84	2.77	2.95	2.73	2.53	2.67	2.08	2.23	2.17	4.76	3.44	2.84	4.51	4.73	2.61	1.72	1.97	3.04	2.66
Wetted Perimeter(ft)	7.68	7.92	10.91	8.94	11.44	20.58	19.14	24.19	22.77	23.23	8.77	8.01	9.68	9.36	9.27	7.38	6.99	6.8	5.41	6.54
Hydraulic radius (ft)	0.54	0.59	0.58	0.53	0.53	0.96	0.99	0.97	0.96	0.91	0.77	0.61	0.8	0.72	0.69	0.93	0.71	0.86	0.72	0.89
Substrate																				
d50 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	4.8	7	0.12	4	20.5	N/A	N/A	N/A	N/A	N/A
d84 (mm)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	28	42	0.6	66	79	N/A	N/A	N/A	N/A	N/A

REACH 2															
_	As-built			MY-1			MY-2			MY-3			MY-4		
Parameter	(2006)			(2006)			(2007)			(2008)			(2009)		
		T						1			1				-
Pattern	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
Channel Beltwidth (ft	11.83	22.05	16.96	11.56	23.13	17.05	11.45	24.13	17.55	10.41	25.86	15.91	11.96	21.21	15.94
Radius of Curvature (ft)	4.63	9.1	6.43	4.776	9.84	6.32	4.7	9.7	6.1	3.85	11.5	7.38	4.22	11.02	7.29
Meander Wavelength (ft)	27.51	34.72	31.75	28.61	35.43	32.47	28.42	35.03	31.73	21.56	40.37	30.58	28.77	35.91	31.36
Meander Width ratio	3.44	4.34	3.97	3.58	4.43	4.06	3.55	4.38	3.97	2.70	5.05	3.82	3.60	4.49	3.92
Profile															
Riffle length (ft)	3.36	11.6	5.6	4.93	7.24	5.88	4.95	7.64	6.01	4.2	15.24	8.73	5.7	11.39	8.19
Riffle slope (ft/ft)	0.0053	0.0555	0.0279	0.0045	0.1073	0.0393	0.0049	0.0534	0.0325	0.00231	0.10249	0.037	0.01052	0.05894	0.036
Pool length (ft)	5.2	10.08	7.59	5.17	14.37	8.67	5	15.25	10.125	4.07	12.31	9.59	6.47	16.42	10.3
Pool Slope (ft/ft)	0.001	0.0092	0.0022	0.00087	0.00754	0.00253	0.00084	0.00253	0.00738	0	0.0072	0.00236	0	0.00746	0.00257
Pool spacing (ft)	9.43	28.94	19.51	14.65	35.31	21.98	14.65	36.12	26.95	8.83	33.24	19.04	11.19	31.62	18.34
Additional Reach													_		
Parameters															
Valley Length (ft)		1872.37			1872.37			1872.37			1872.37			1872.37	
Channel Length (ft)		2190.67			2190.67			2190.67			2190.67			2190.67	
Sinuosity		1.2			1.2			1.2			1.2			1.2	
Water Surface Slope (ft/ft)		0.025			0.025			0.025			0.025			0.025	
BF slope (ft/ft)		0.025			0.025			0.025			0.025			0.025	
Rosgen Classification		B4		Ī	B4			B4			B4			B4	
Habitat Index*		N/A			N/A			N/A			N/A			N/A	
Macrobenthos*		N/A			N/A			N/A			N/A			N/A	

7. Benthic Macroinvertebrate Assessment and Interpretation of Data

Year 3 benthic sampling was performed by professionals with the necessary DWQ certification credentials. Samples were preserved in the field in 95% denatured Ethyl alcohol. Following collection, samples were sent to Pennington and Associates, a certified laboratory, for identification.

As stated in the Gray Farm Stream Restoration Mitigation Report (July 2006), biological monitoring will be used as a general indicator of restoration success; however, no specific biological criteria apply to the success of the restoration reaches.

As previously described, benthic sampling was performed at five (5) sampling locations. Where possible, each monitoring station consisted of a riffle-pool sequence. At each station, the Qual-4 sampling method, as described in the NCDENR-DWQ's <u>Standard Operating Procedures for Benthic</u> <u>Macroinvertebrates</u>. The Qual-4 method consists of:

Kick Net Sample (from riffle)
 Sweep Net Sample (from bank)
 Leaf Pack Sample
 Visual Observation Sample

Ephemeropteran, Plecopteran, and Tricohopteran (EPT) taxa and abundance and NC Biotic Indices (NCBI), as well as a list of all taxa collected at each sampling point during previous monitoring years, are provided in Appendix C.

The benthic macroinvertebrate assessment presented in this report is based on Year 3 benthic sampling conducted in November 2008.

Benthic data for Year 3 indicate that water quality within Reach 1 is poor in the uppermost portion of the site abutting the cow pasture and upstream degraded channel segment, and increases within the restoration reach and the area downstream of the restoration reach. At all three (3) Reach 1 benthic monitoring stations the abundance, species diversity, EPT taxa, and EPT abundance are similar to or better than the pre-restoration conditions. These data indicate that the restoration of Reach 1 has been successful in improving water quality within the subject channel and the downstream receiving waters.

Within Reach 2, the NCBI rating for Year 3 at Station 1, within the restoration reach, is 9.11 indicating many tolerant taxa and relatively poor water quality. No EPT taxa were collected at Station 1; however, EPT taxa, species diversity and abundance increased between Station 1 and Station 2. During Monitoring Year 3, Station 2 received a low NCBI score (5.02), indicating few tolerant taxa and relatively high water quality.

NOTE: In the previously submitted Year 3 Monitoring Report, benthic macroinvertebrate data for Year 2 were entered for actual numbers of

organisms collected. This has been corrected, and the Year 4 Monitoring Report reflects the assigned values for all organisms collected in all monitoring years. For this reason, the data from Year 2 appear differently in this report than in the previously submitted Year 3 Monitoring Report.

IV. Methodology Section

With the exception of the aforementioned use of Level 2 (Planted and Natural Woody Stems) of the CVS-EEP Vegetation Monitoring Protocol, no deviations from initially prescribed methodologies were implemented as a part of Monitoring Year 4 (2009) activities.

APPENDIX A

VEGETATION RAW DATA

APPENDIX A.1 -

Vegetation Survey Data Tables

Table V-1 – Vegetation Metadata

Report Prepared By Date Prepared	David Cooper 11/12/2009 14:51
database name database location	DRAFT_2008-Gray Farm-level2.mdb \\Sec2\jobs7-9k\9385.D7-D11\YEAR 4 - D10\MONITORING DATA
DESCRIPTION OF WORKS	HEETS IN THIS DOCUMENT
Metadata	This worksheet, which is a summary of the project and the project data.
Plots	List of plots surveyed.
	Frequency distribution of vigor
Vigor	classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Stem Count by Plot and	Damage values tamed by type for each plot.
Spp	Count of living stems of each species for each plot; dead and missing stems are excluded.

PROJECT SUMMARY-----

Project Code	project Name	Description	length(ft)	stream-to-edge width (ft)	area (sq m)	Required Plots (calculated)	Sampled Plots
GF1	Gray Farm Reach 1	Gray Farm stream restoration - Reach 1					4
GF2	Gray Farm Reach 2	Gray Farm stream restoration - Reach 2					2

Table V-2 – Vegetation Vigor by Species

	Species	4	3	2	1	0	Missing
	Alnus serrulata	2	2				3
	Betula nigra	2				1	1
	Cornus amomum		3				
	Diospyros virginiana						
	Fraxinus						
	pennsylvanica	1	1	1			3
	Liquidambar						
	styraciflua						
	Pinus taeda						
	Pinus virginiana						
	Quercus michauxii		1				
	Quercus nigra						2
	Quercus phellos	3	8	3	1	1	2
	Salix nigra						
	Sambucus canadensis						
	Viburnum nudum		1				1
	Viburnum		1				
	Viburnum dentatum	1					
	Ilex opaca		2				3
	Betula lenta						
	Carpinus caroliniana	1					
	Juniperus virginiana						
	Quercus sp.						6
	Quercus sp. Quercus rubra	2					1
	Lindera benzoin	-					4
	Liriodendron tulipifera	2	1				3
	Platanus occidentalis	10	13				5
	Prunus serotina	10	15				5
	Acer negundo	<u> </u>		-			
	Acer negunao Acer rubrum						
тот		24	22	4	1	2	24
TOT:	28	24	33	4	1	2	34

		All Damage	(no		
	Species	Categories	damage)	Deer	Insects
	Acer negundo	2	2		
	Acer rubrum	6	6		
	Alnus serrulata	7	7		
	Betula lenta	1	1		
	Betula nigra	4	4		
	Carpinus caroliniana	2	2		
	Cornus amomum	3	2	1	
	Diospyros virginiana	3	3		
	Fraxinus pennsylvanica	7	6		1
	Ilex opaca	5	5		
	Juniperus virginiana	1	1		
	Lindera benzoin	4	4		
	Liquidambar styraciflua	2	2		
	Liriodendron tulipifera	7	7		
	Pinus taeda	1	1		
	Pinus virginiana	1	1		
	Platanus occidentalis	30	30		
	Prunus serotina	2	2		
	Quercus sp.	6	6		
	Quercus michauxii	1	1		
	Zuercus nigra	2	2		
	Quercus phellos	18	18		
	Quercus rubra	4	4		
	Z Salix nigra	1	1		
	Sambucus canadensis	2	2		
	Viburnum sp.	1	1		
	Viburnum dentatum	1	1		
	Viburnum nudum	2	2		
TOT:	28	126	124	1	1

Table V-3 – Vegetation Damage by Species

Table V-4 – Vegetation Damage by Plot

	plot	All Damage Categories	(no damage)	Deer	Insects
	GFR1-01-buffer1-year:3	20	20		
	GFR1-01-buffer2-year:3	21	20		1
	GFR1-01-buffer3-year:3	22	22		
	GFR1-01-buffer4-year:3	18	17	1	
	GFR2-01-Buffer1-year:3	28	28		
	GFR2-01-Buffer2-year:3	17	17		
TOT:	6	126	124	1	1

Table V-5 – Stem Count by Plot and Species

	Species	Total Stems	# plots	Avg. # stems	Gray Farm Reach 1, Buffer Plot 1, Year 4	Gray Farm Reach 1, Buffer Plot 2, Year 4	Gray Farm Reach 1, Buffer Plot 3, Year 4	Gray Farm Reach 1, Buffer Plot 4, Year 4	Gray Farm Reach 2, Buffer Plot 1, Year 4	Gray Farm Reach 2, Buffer Plot 2, Year 4
	Alnus serrulata	4	3	1.33	2		1	1		
	Betula nigra	2	2	1			1	1		
	Carpinus caroliniana	1	1	1					1	
	Cornus amomum	3	2	1.5			1	2		
	Fraxinus pennsylvanica	3	3	1	1	1	1			
	Ilex opaca	2	2	1			1		1	
	Liriodendron tulipifera	3	2	1.5		1				2
	Platanus occidentalis	23	6	3.83	2	2	9	7	2	1
	Quercus michauxii	1	1	1		1				
	Quercus phellos	15	4	3.75	2	2			10	1
	Quercus rubra	2	2	1	1					1
	Viburnum	1	1	1		1				
	Viburnum dentatum	1	1	1						1
	Viburnum nudum	1	1	1		1				
TOT:	14	62	14		8	9	14	11	14	6
	Total Plot Density (Stems Per Acre)			324	364	567	445	567	243	
	Average Plot Density (Stems Per Acre)			418						

APPENDIX A.2 –

Vegetation Problem Area Tables

Exhibit Table A1 - Vegetative Problem Areas Gray Farm Stream Restoration Site/EEP Project #92219

Reach 1						
Feature/Issue	Station # / Range	Probable Cause	Photo #			
	2+00-2+60	Surface Flow / Poor Soil Quality				
	4+50 - 5+75	Surface flow / Poor soil quality				
Bare Floodplain	6+10 - 6+90	Surface flow / Poor soil quality	1-2			
	42+00 - 42+50	Surface flow / Poor soil quality				
	42+75 - 43+30	Surface flow / Poor soil quality				
Bare Bank	40+70 - 41+00	Bank Scour	3			

Reach 2							
Feature/Issue	Station # / Range	Probable Cause	Photo #				
Vegetative Problem Areas Improved from Last Year	21+00 et.al.	Revegetation of previously bare areas	4				

APPENDIX A.3 –

Vegetation Problem Area Photos

Photo 1 – Typical Bare Bench/Floodplain – Reach 1 – Year 4 (2009)

Photo 2 – Typical Bare Bench/Floodplain – Reach 1 – Year 4 (2009)

Gray Farm Stream Restoration Site Year 4 Monitoring December 2009

Photo 3 – Typical Bare Bank, Improved from Year 3 – Reach 1 – Year 4 (2009)

Photo 4 – Typical Vegetated Bench/Floodplain, Improved from Year 3 – Reach 2 – Year 4 (2009)

APPENDIX A.4 -

Vegetation Monitoring Plot Photos

Vegetation Monitoring Plot—Reach 1— Buffer 1—Year 4 (2009)

Vegetation Monitoring Plot—Reach 1— Buffer 1—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1—Buffer 1—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1—Buffer 1—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1— Buffer 2—Year 4 (2009)

Vegetation Monitoring Plot—Reach 1— Buffer 2—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1— Buffer 2—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1— Buffer 2—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1— Buffer 3—Year 4 (2009)

Vegetation Monitoring Plot—Reach 1— Buffer 3—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1— Buffer 3—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1— Buffer 3—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1— Buffer 4—Year 4 (2009)

Vegetation Monitoring Plot—Reach 1— Buffer 4—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1— Buffer 4—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1— Buffer 4—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1— Bank 1—Year 4 (2009)

Vegetation Monitoring Plot—Reach 1— Bank 1—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1— Bank 1—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1— Bank 1—Year 1 (2006)

Vegetation Monitoring Plot—Reach 1— Bank 2—Year 4 (2009)

Vegetation Monitoring Plot—Reach 1— Bank 2—Year 3 (2008)

Vegetation Monitoring Plot—Reach 1— Bank 2—Year 2 (2007)

Vegetation Monitoring Plot—Reach 1— Bank 2—Year 1 (2006)

Vegetation Monitoring Plot—Reach 2— Buffer 1—Year 4 (2009)

Vegetation Monitoring Plot—Reach 2— Buffer 1—Year 3 (2008)

Vegetation Monitoring Plot—Reach 2— Buffer 1—Year 2 (2007)

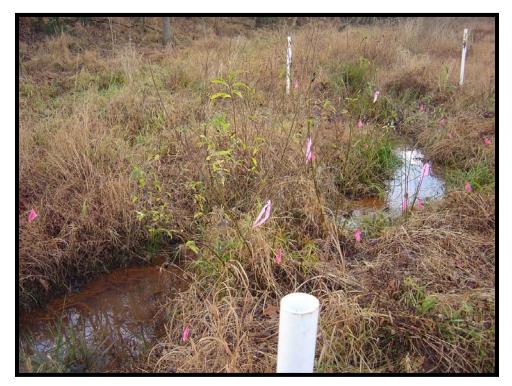
Vegetation Monitoring Plot—Reach 2— Buffer 1—Year 1 (2006)

Vegetation Monitoring Plot—Reach 2— Buffer 2—Year 4 (2009)

Vegetation Monitoring Plot—Reach 2— Buffer 2—Year 3 (2008)

Vegetation Monitoring Plot—Reach 2— Buffer 2—Year 2 (2007)

Vegetation Monitoring Plot—Reach 2— Buffer 2—Year 1 (2006)


Vegetation Monitoring Plot—Reach 2— Bank 1—Year 4 (2009)

Vegetation Monitoring Plot—Reach 2— Bank 1—Year 3 (2008)

Vegetation Monitoring Plot—Reach 2— Bank 1—Year 2 (2007)

Vegetation Monitoring Plot—Reach 2— Bank 1—Year 1 (2006)

Vegetation Monitoring Plot—Reach 2— Bank 2—Year 4 (2009)

Vegetation Monitoring Plot—Reach 2— Bank 2—Year 3 (2008)

Vegetation Monitoring Plot—Reach 2— Bank 2—Year 2 (2007)

Vegetation Monitoring Plot—Reach 2— Bank 2—Year 1 (2006)

APPENDIX B

GEOMORPHOLOGIC RAW DATA

APPENDIX B.1 -

Bankfull Events

Photo 1 – Reach 1 – Wrack Piles near Cross-section 3

Photo 2 – Reach 1 – Overbank Event 11/11/2009

Gray Farm Stream Restoration Site Year 4 Monitoring December 2009

Photo 3 – Reach 2 – Bankfull Event 11/11/2009

APPENDIX B.2 –

Stream Problem Area Table (Table B1)

Reach 1				
Feature Issue	Station numbers	Suspected Cause	Photo number	
Bank Scour	24+75	Surface flow	1-2	
	30+00	Surface flow		
	32+60	Surface flow		
	41+60	Surface flow		
	43+05	Surface flow - Settling fill		
Undercut Bank	47+00 - 47+50	Increased water velocity from nearby tributary	3	
Structures	0+30	Buried Structure - Upstream Sediment	- 4	
	1+50	Buried Structure - Upstream Sediment		
	24+75	Stressed structure - Bank Scour	1-2	
	31+60	Stressed structure - Bank Scour		
	41+60	Stressed structure - Bank Scour		
	43+05	Stressed structure - Bank Scour		
Beaver Dam	56+40	Beavers	5	

Exhibit Table B1- Stream Problem Areas Gray Farm Stream Restoration Site/EEP Project #92219

Reach 2				
Feature Issue	Station numbers	Suspected Cause	Photo number	
Bank Scour	2+50	Surface Flow		
	4+80	Surface flow		
	6+00	Surface flow	6	
	16+60	Surface flow		
	12+70 - 12+80	Surface flow		
Channel Scour	16+10	High Stormwater Flow	7	
Structures	2+50	Stressed Structure - Bank Scour		
	4+80	Stressed structure - Bank Scour		
	6+00	Stressed structure - Bank Scour	6	
	16+60	Stressed structure - Bank Scour		
	12+70 - 12+80	Stressed structures - Bank Scour		

APPENDIX B.3 –

Stream Problem Area Photos

Photo 1 – Typical Stressed Structure/Bank Scour – Reach 1 – Year 4 (2009)

Photo 2 – Typical Stressed Structure/Bank Scour – Reach 1 – Year 4 (2009)

Gray Farm Stream Restoration Site Year 4 Monitoring December 2009

Photo 3 – Typical Undercut Bank – Reach 1 – Year 4 (2009)

Photo 4 – Sediment from Off-site – Reach 1 near Beginning of Restoration – Year 4 (2009)

Gray Farm Stream Restoration Site Year 4 Monitoring December 2009

Photo 5 – Beaver Dam – Reach 1 near End of Restoration – Year 4 (2009)

Photo 6 – Typical Stressed Structure/Bank Scour – Reach 2 – Year 4 (2009)

Photo 7 – Area of Channel Scour (Station 16+10 in Long Profile Section 2) – Reach 2 – Year 4 (2009)

APPENDIX B.4 -

Stream Photo-Station Photos

Cross-Section 1— Reach 1—Riffle 1—Year 4 (2009)

Cross-Section 1— Reach 1—Riffle 1—Year 3 (2008)

Cross-Section 1— Reach 1—Riffle 1—Year 2 (2007)

Cross-Section 1— Reach 1—Riffle 1—Year 1 (2006)

Cross-Section 1— Reach 1—Pool 1—Year 4 (2009)

Cross-Section 1— Reach 1—Pool 1—Year 3 (2008)

Cross-Section 1— Reach 1—Pool 1—Year 2 (2007)

Cross-Section 1— Reach 1—Pool 1—Year 1 (2006)

Cross-Section 2—Reach 1—Riffle 2—Year 4 (2009)

Cross-Section 2—Reach 1—Riffle 2—Year 3 (2008)

Cross-Section 2—Reach 1—Riffle 2—Year 2 (2007)

Cross-Section 2—Reach 1—Riffle 2—Year 1 (2006)

Cross-Section 2—Reach 1 - Pool 2—Year 4 (2009)

Cross-Section 2—Reach 1 - Pool 2—Year 3 (2008)

Cross-Section 2—Reach 1 - Pool 2—Year 2 (2007)

Cross-Section 2—Reach 1 - Pool 2—Year 1 (2006)

Cross-Section 3—Reach 1—Riffle 3—Year 4 (2009)

Cross-Section 3—Reach 1—Riffle 3—Year 3 (2008)

Cross-Section 3—Reach 1—Riffle 3—Year 2 (2007)

Cross-Section 3—Reach 1—Riffle 3—Year 1 (2006)

Cross-Section 3—Reach 1 - Pool 3—Year 4 (2009)

Cross-Section 3—Reach 1 - Pool 3—Year 3 (2008)

Cross-Section 3—Reach 1 - Pool 3—Year 2 (2007)

Cross-Section 3—Reach 1 - Pool 3—Year 1 (2006)

Cross-Section 4—Reach 1—Riffle 4—Year 4 (2009)

Cross-Section 4—Reach 1—Riffle 4—Year 3 (2008)

Cross-Section 4—Reach 1—Riffle 4—Year 2 (2007)

Cross-Section 4—Reach 1—Riffle 4—Year 1 (2006)

Cross-Section 4—Reach 1—Pool 4—Year 4 (2009)

Cross-Section 4—Reach 1—Pool 4—Year 3 (2008)

Cross-Section 4—Reach 1—Pool 4—Year 2 (2007)

Cross-Section 4—Reach 1—Pool 4—Year 1 (2006)

Cross-Section 5—Reach 1—Riffle 5—Year 4 (2009)

Cross-Section 5—Reach 1—Riffle 5—Year 3 (2008)

Cross-Section 5—Reach 1—Riffle 5—Year 2 (2007)

Cross-Section 5—Reach 1—Riffle 5—Year 1 (2006)

Cross-Section 5—Reach 1—Pool 5—Year 4 (2009)

Cross-Section 5—Reach 1—Pool 5—Year 3 (2008)

Cross-Section 5—Reach 1—Pool 5—Year 2 (2007)

Cross-Section 5—Reach 1—Pool 5—Year 1 (2006)

Cross-Section 6—Reach 1—Riffle 6—Year 4 (2009)

Cross-Section 6—Reach 1—Riffle 6—Year 3 (2008)

Cross-Section 6—Reach 1—Riffle 6—Year 2 (2007)

Cross-Section 6—Reach 1—Riffle 6—Year 1 (2006)

Appendix B

Cross-Section 6—Reach 1—Pool 6—Year 4 (2009)

Cross-Section 6—Reach 1—Pool 6—Year 3 (2008)

Cross-Section 6—Reach 1—Pool 6—Year 2 (2007)

Cross-Section 6—Reach 1—Pool 6—Year 1 (2006)

Cross-Section 7—Reach 1—Riffle 7—Year 4 (2009)

Cross-Section 7—Reach 1—Riffle 7—Year 3 (2008)

Cross-Section 7—Reach 1—Riffle 7—Year 2 (2007)

Cross-Section 7—Reach 1—Riffle 7—Year 1 (2006)

Cross-Section 7—Reach 1—Pool 7—Year 4 (2009)

Cross-Section 7—Reach 1—Pool 7—Year 3 (2008)

Cross-Section 7—Reach 1—Pool 7—Year 2 (2007)

Cross-Section 7—Reach 1—Pool 7—Year 1 (2006)

Cross-Section 1—Reach 2—Riffle 1—Year 4 (2009)

Cross-Section 1—Reach 2—Riffle 1—Year 3 (2008)

Cross-Section 1—Reach 2—Riffle 1—Year 2 (2007)

Cross-Section 1—Reach 2—Riffle 1—Year 1 (2006)

Cross-Section 1—Reach 2—Pool 1—Year 4 (2009)

Cross-Section 1—Reach 2—Pool 1—Year 3 (2008)

Cross-Section 1—Reach 2—Pool 1—Year 2 (2007)

Cross-Section 1—Reach 2—Pool 1—Year 1 (2006)

Cross-Section 2—Reach 2—Riffle 2—Year 4 (2009)

Cross-Section 2—Reach 2—Riffle 2—Year 3 (2008)

Cross-Section 2—Reach 2—Riffle 2—Year 2 (2007)

Cross-Section 2—Reach 2—Riffle 2—Year 1 (2006)

Cross-Section 2—Reach 2—Pool 2—Year 4 (2009)

Cross-Section 2—Reach 2—Pool 2—Year 3 (2008)

Cross-Section 2—Reach 2—Pool 2—Year 2 (2007)

Cross-Section 2—Reach 2—Pool 2—Year 1 (2006)

APPENDIX B.5 –

Exhibit Table B2 - Qualitative Visual Stability Assessment

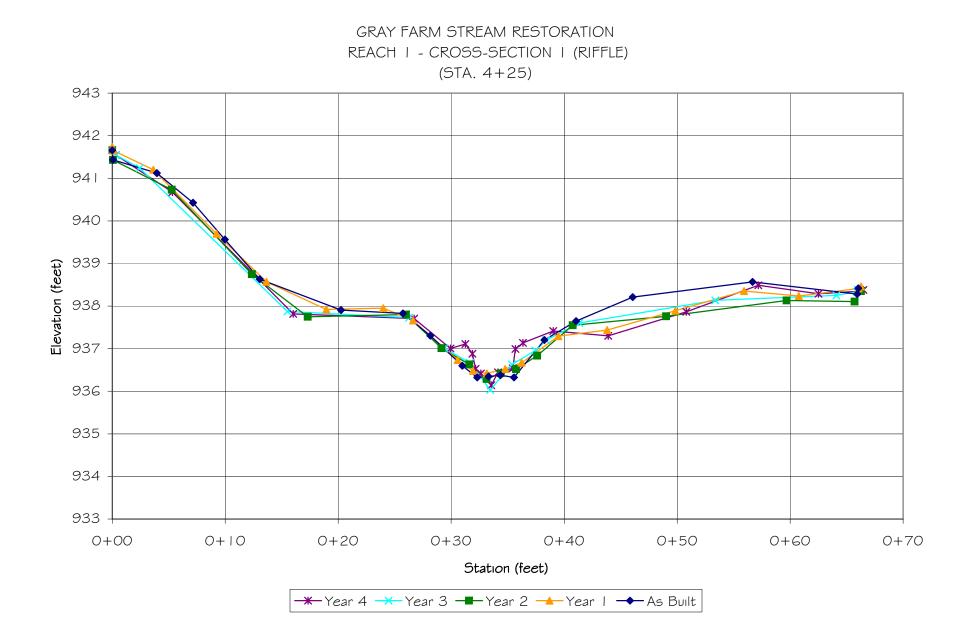
Table B2 - Qualitative Visual Stability AssessmentDate: NOVEMBER 2009GRAY FARM STREAM RESTORATION - REACH 1

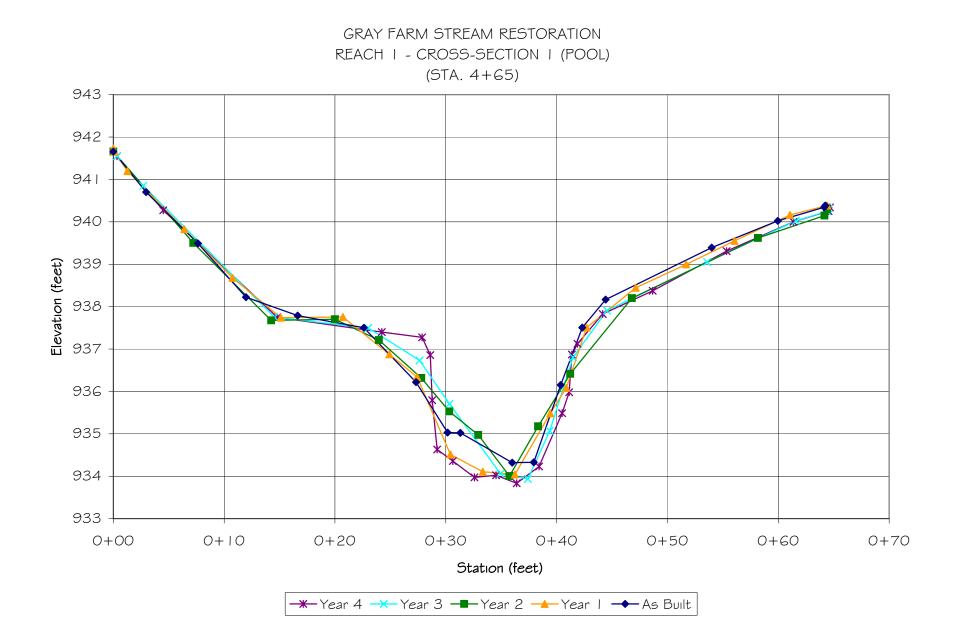
Project # 9385.D10

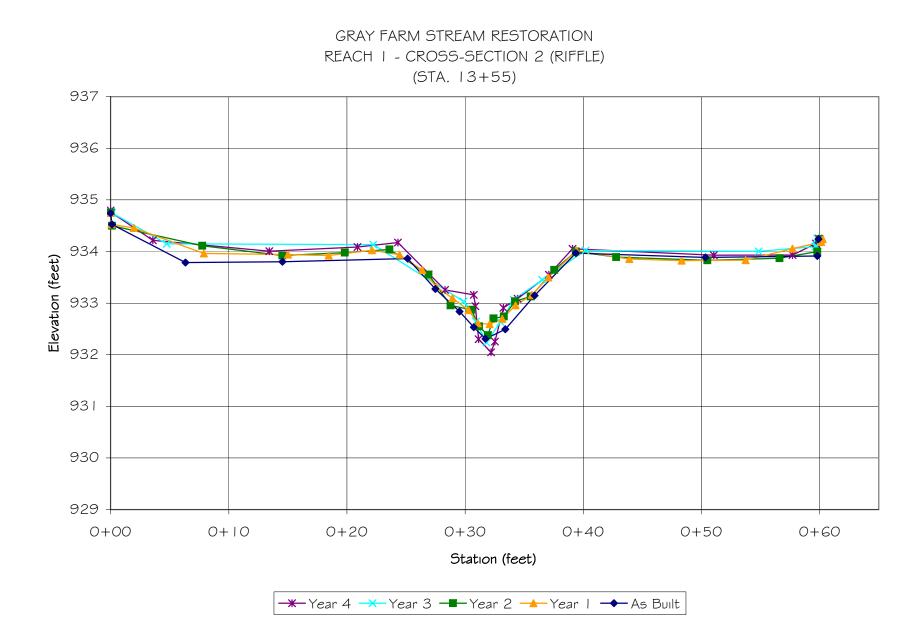
Feature Category	Metric (per As-built and reference baselines	(# stable) Number performing as intended	Total number per As- built	Total Number / feet in unstable state	% perfor. in stable condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	34	34	NA	100%	
	2. Armor stable (e.g. no displacement)?	34	34	NA	100%	
	3. Facet grade appears stable?	33	34	NA	97%	
	4. Stable interval grade?	34	34	NA	100%	
	5. Feature spacing appropriate?	34	34	NA	100%	
	6. Minimal evidence of embedding/fining?	34	34	NA	100%	
	7. Depth appears appropriate for current discharge?	34	34	NA	100%	
	8. Length appropriate?	34	34	NA	100%	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation?)	48	49	NA	98%	
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6)	48	49	NA	98%	
	3. Thalweg located outer bend?	49	49	NA	100%	
	4. Spacing appropriate?	49	49	NA	100%	
	5. Non-aggrading (not filling)?	48	49	NA	98%	
	6. Length appropriate?	49	49	NA	100%	99%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	34	34	NA	100%	
	2. Downstream of meander (glide/inflection) centering?	33	34	NA	97%	99%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	48	49	NA	98%	
	2. Of those eroding, # w/ concomitant point bar formation?	N/A	49	NA	N/A	
	3. Apparent Rc within spec?	49	49	NA	100%	
	4. Sufficient floodplain access and relief?	49	49	NA	100%	99%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	0	100%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting?	NA	NA	75	98%	99%
G. Banks	1. Apparent scour points from channel processes	NA	NA	35	99%	
	2. Apparent cut points from overland flow	NA	NA	150	96%	
	3. Apparent cut or scour from flood water re-entry to channel (e.g. inadequate floodplain access?)	NA	NA	0	100%	
	4. Tension cracks	NA	NA	0	100%	
	5. Bank gradient in excess of 40%?	NA	NA	0	100%	
	6. Collapse/slumping	NA	NA	0	100%	
	7. Ratio of bank height: bankfull height elevated	NA	NA	0	100%	99%
H. Vanes	1. Free of back or arm scour?	27	28	N/A	96%	
	2. Height appropriate?	28	28	N/A	100%	
	3. Angle and geometry appear appropriate?	27	28	N/A	96%	
	4. Free of piping or other structural failures?	28	28	N/A	100%	98%
I. Wads/Boulders	1. Free of scour?	0	0	N/A	N/A	
	2. Footing stable?	0	0	N/A	N/A	N/A

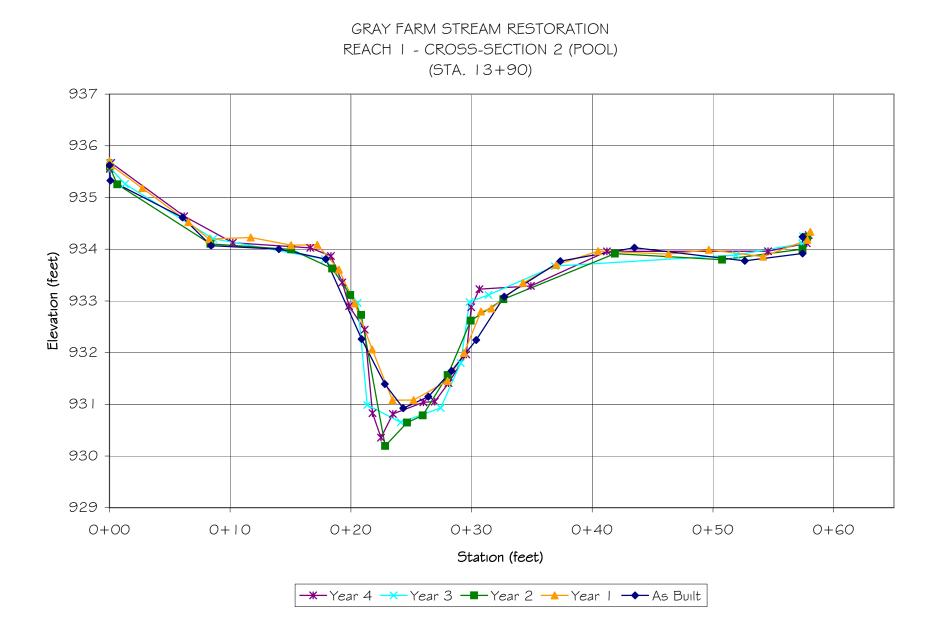
Notes:

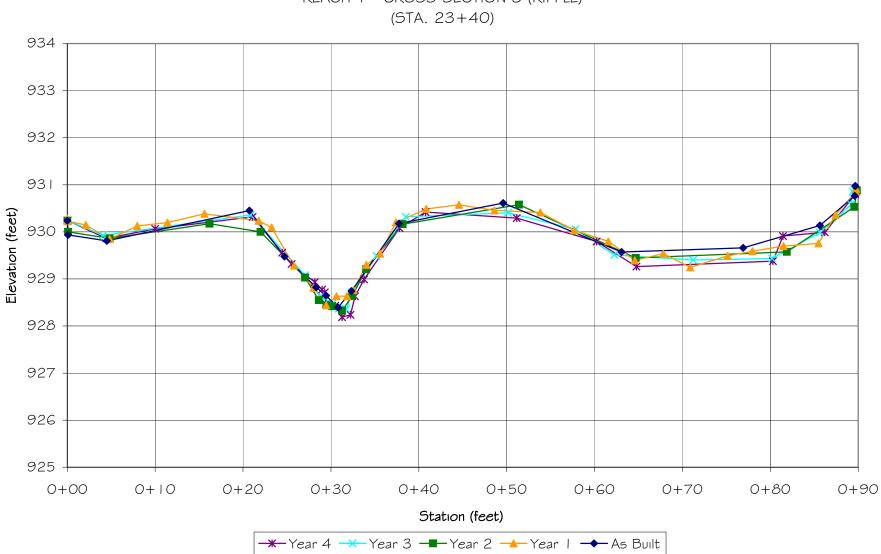
Table B2 - Qualitative Visual Stability AssessmentDate: NOVEMBER 2009GRAY FARM STREAM RESTORATION - REACH 2

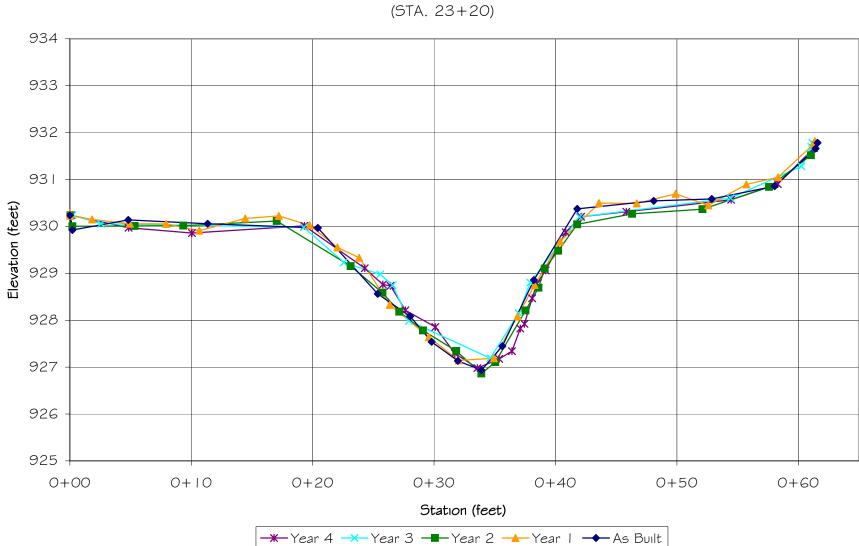

Project # 9385.D10

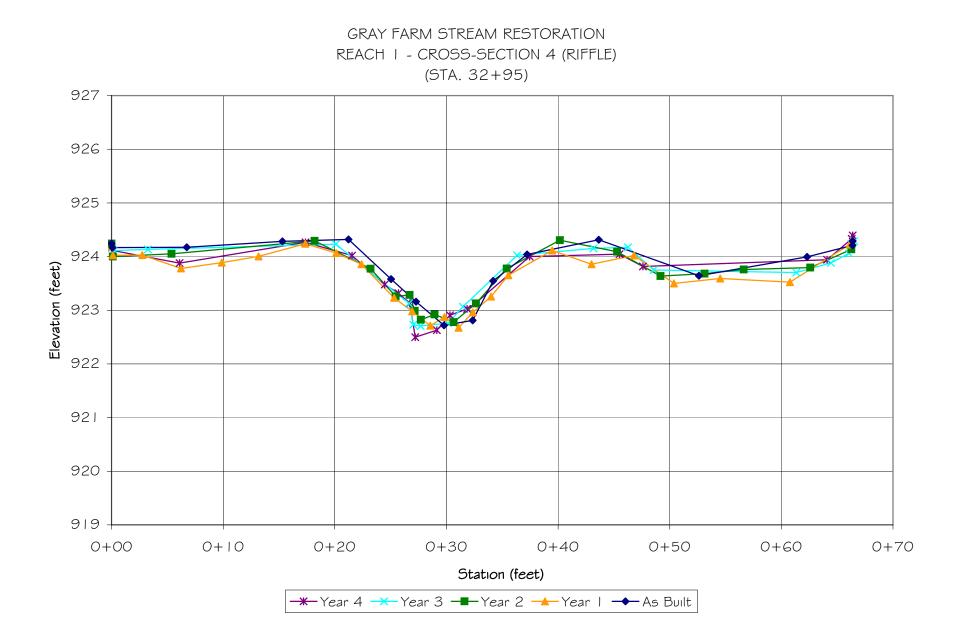

Feature Category	Metric (per As-built and reference baselines	(# stable) Number performing as intended	Total number per As- built	Total Number / feet in unstable state	% perfor. in stable condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	51	51	NA	100%	
	2. Armor stable (e.g. no displacement)?	51	51	NA	100%	
	3. Facet grade appears stable?	51	51	NA	100%	
	4. Stable interval grade?	51	51	NA	100%	
	5. Feature spacing appropriate?	51	51	NA	100%	
	6. Minimal evidence of embedding/fining?	51	51	NA	100%	
	Depth appears appropriate for current discharge?	51	51	NA	100%	
	8. Length appropriate?	51	51	NA	100%	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation?)	52	52	NA	100%	
2.1 0010	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6)	52	52	NA	100%	
	3. Thalweg located outer bend?	52	52	NA	100%	
	4. Spacing appropriate?	52	52	NA	N/A	
	5. Non-aggrading (not filling)?	52	52	NA	100%	
	6. Length appropriate?	52	52	NA	N/A	100%
0 . .		-	-			,.
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	51	51	NA	100%	
	2. Downstream of meander (glide/inflection) centering?	51	51	NA	100%	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	49	52	NA	94%	
	2. Of those eroding, # w/ concomitant point bar formation?	N/A	N/A	NA	N/A	
	3. Apparent Rc within spec?	52	52	NA	100%	
	4. Sufficient floodplain access and relief?	52	52	NA	100%	97%
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	0	100%	
	2. Channel bed degradation - areas of increasing down cutting or head cutting?	NA	NA	15	99%	99%
G. Banks	1. Apparent scour points from channel processes	NA	NA	25	98%	
	2. Apparent cut points from overland flow	NA	NA	0	100%	
	3. Apparent cut or scour from flood water re-entry to channel (e.g. inadequate floodplain access?)		NA	0	100%	
	4. Tension cracks	NA	NA	0	100%	
	5. Bank gradient in excess of 40%?	NA	NA	0	100%	
	6. Collapse/slumping	NA	NA	0	100%	
	7. Ratio of bank height: bankfull height elevated	NA	NA	0	100%	100%
H. Vanes	1. Free of back or arm scour?	50	53	NA	94%	
n. vanes	2. Height appropriate?	53	53	NA	100%	
	3. Angle and geometry appear appropriate?	51	53	NA	96%	
	4. Free of piping or other structural failures?	50	53	NA	94%	96%
				r		2070
I. Wads/Boulders	1. Free of scour?	0	0	NA	N/A	
	2. Footing stable?	0	0	NA	N/A	N/A

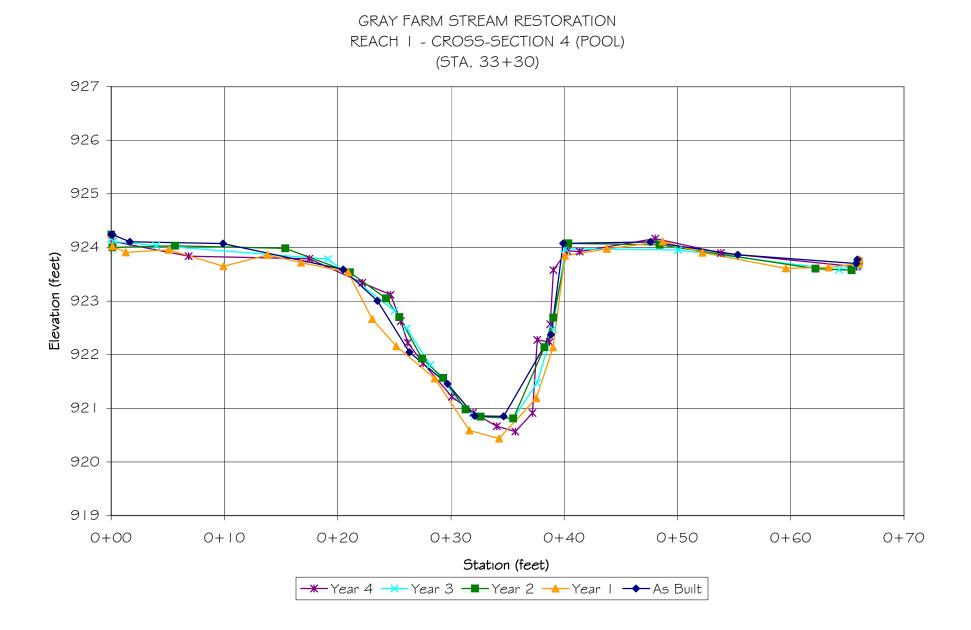

Notes:

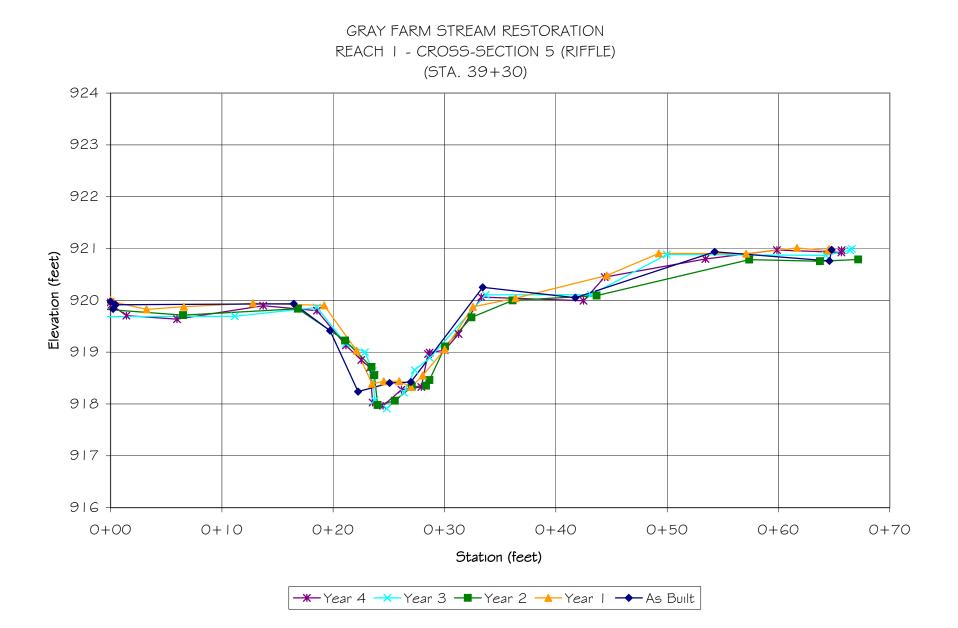

APPENDIX B.6 –

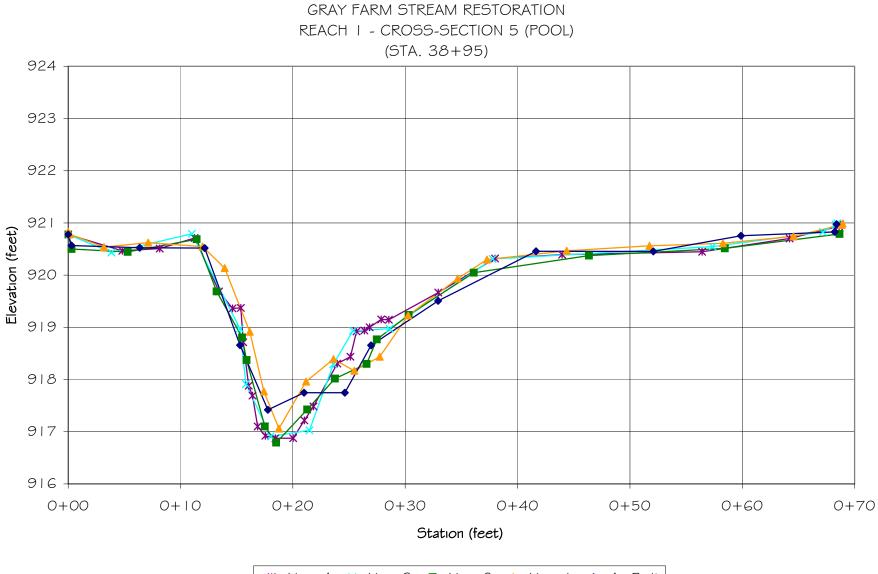

Annual Overlays of Cross Section Plots



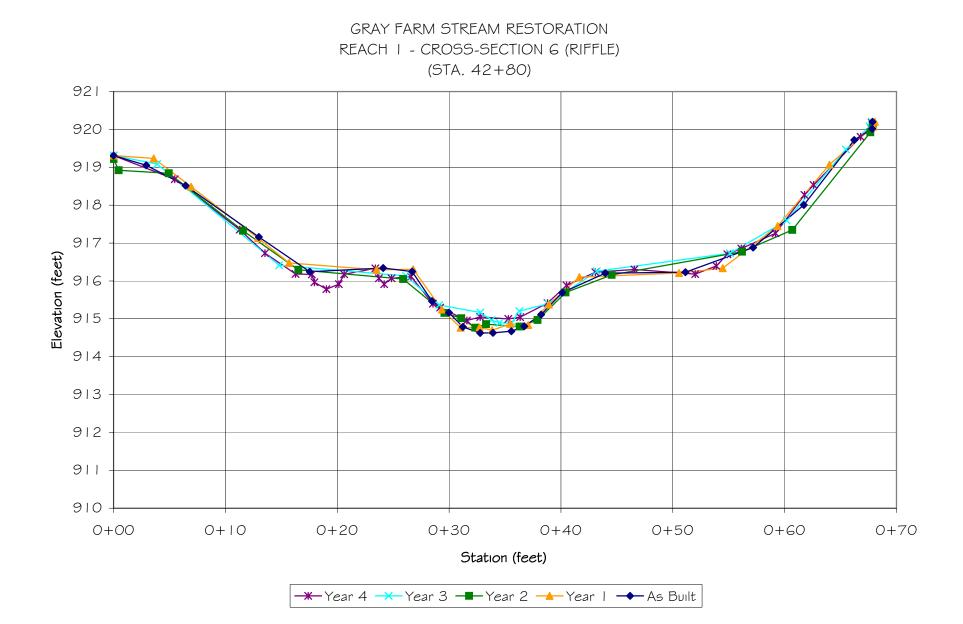


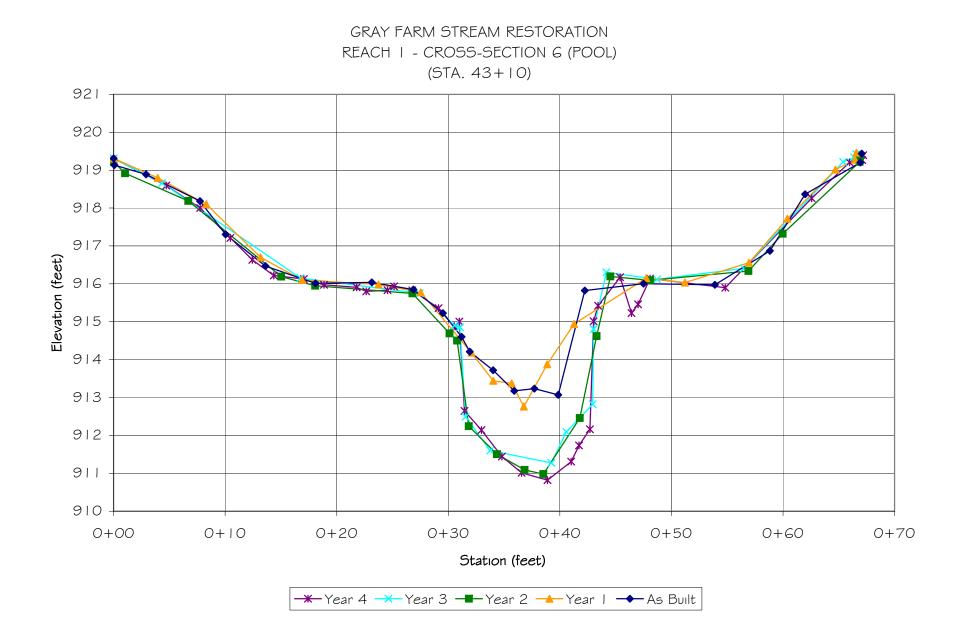


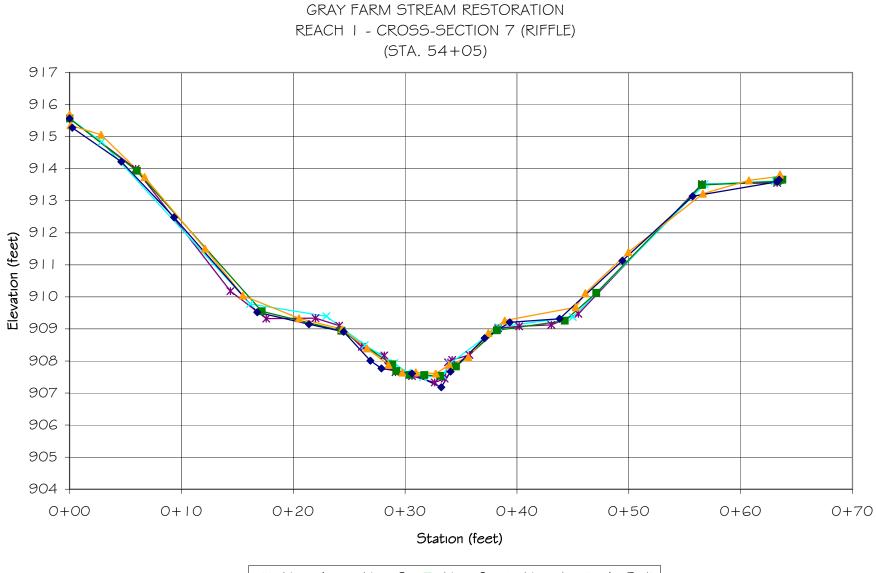

GRAY FARM STREAM RESTORATION REACH 1 - CROSS-SECTION 3 (RIFFLE) (STA. 23+40)



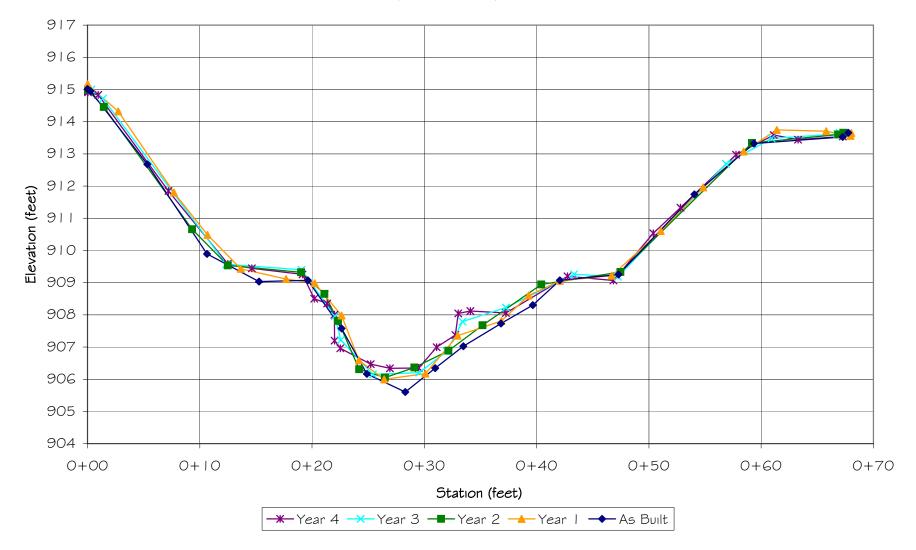
GRAY FARM STREAM RESTORATION REACH I - CROSS-SECTION 3 (POOL) (STA. 23+20)

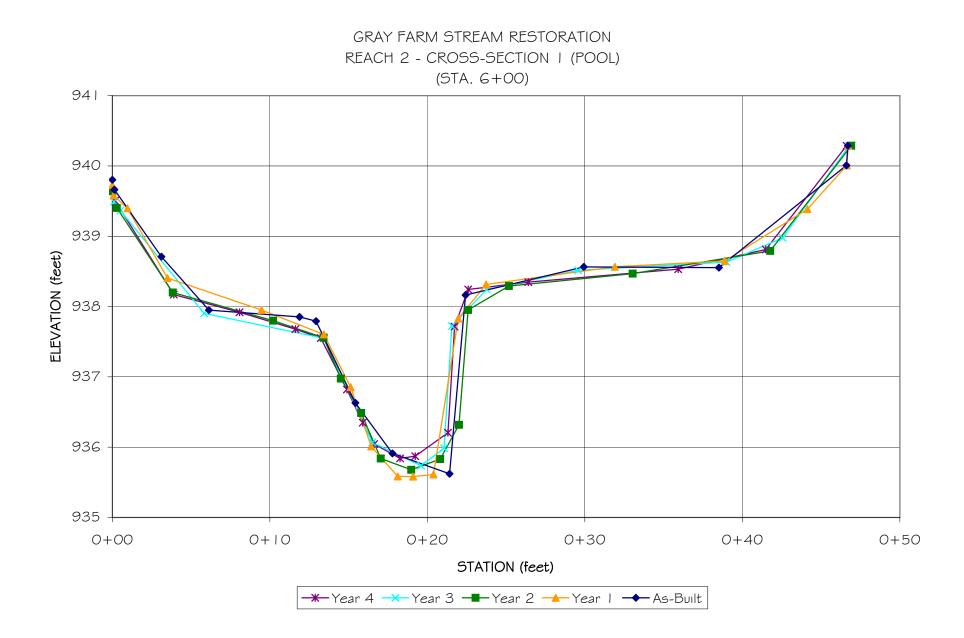


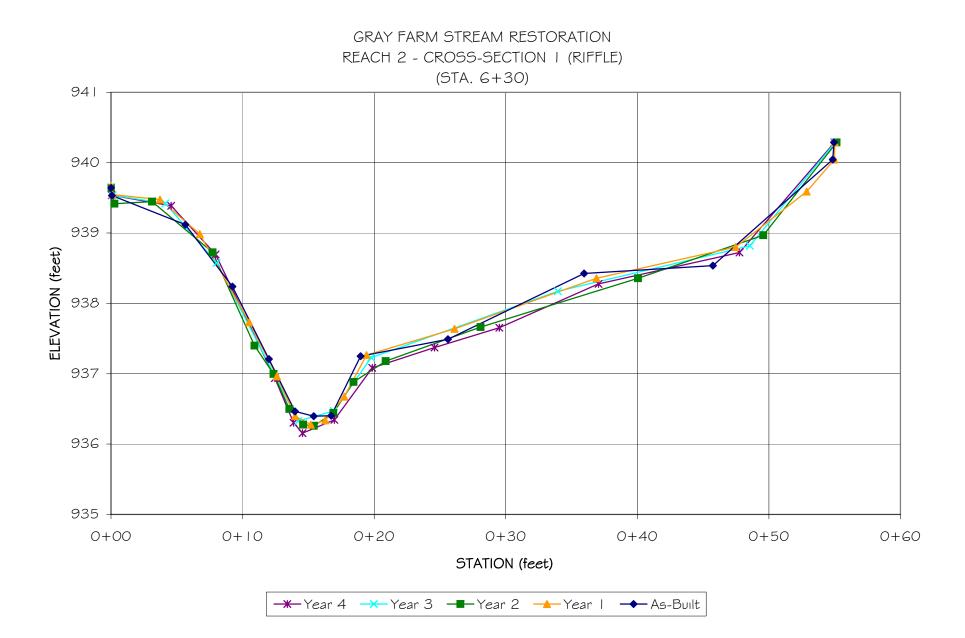


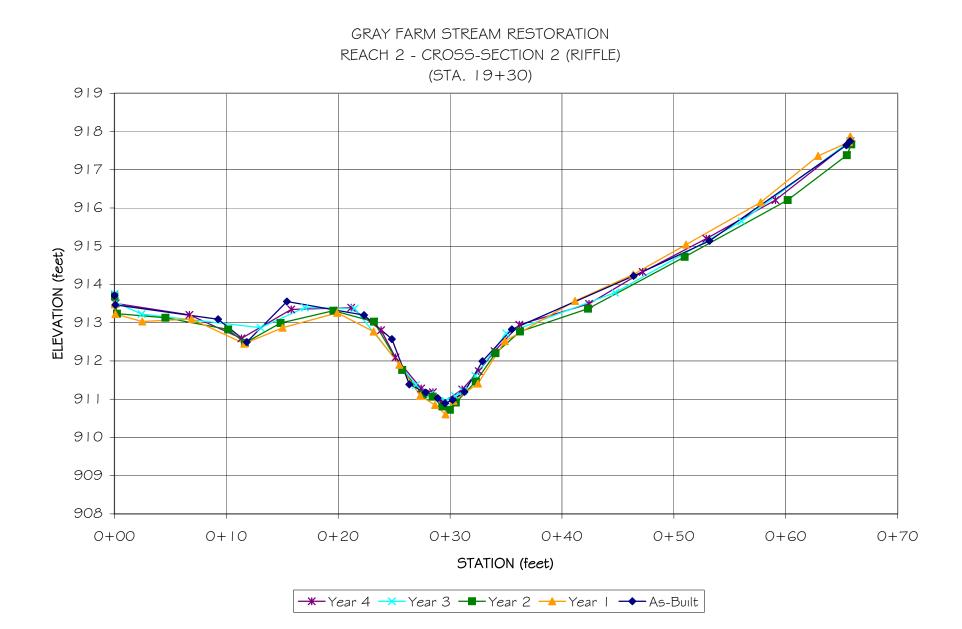


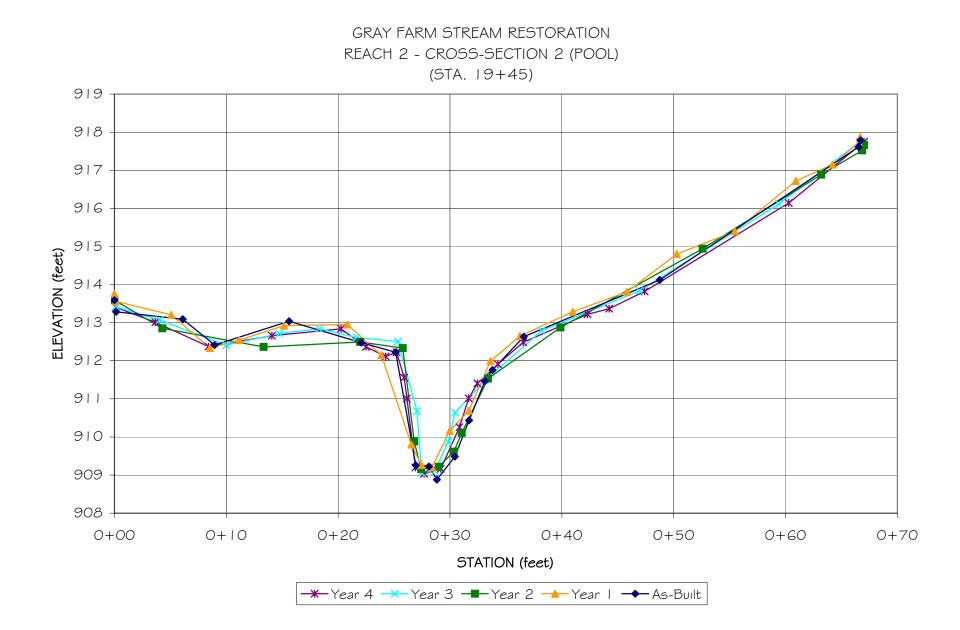
🗶 Year 4 → Year 3 📲 Year 2 → Year 1 → As Built

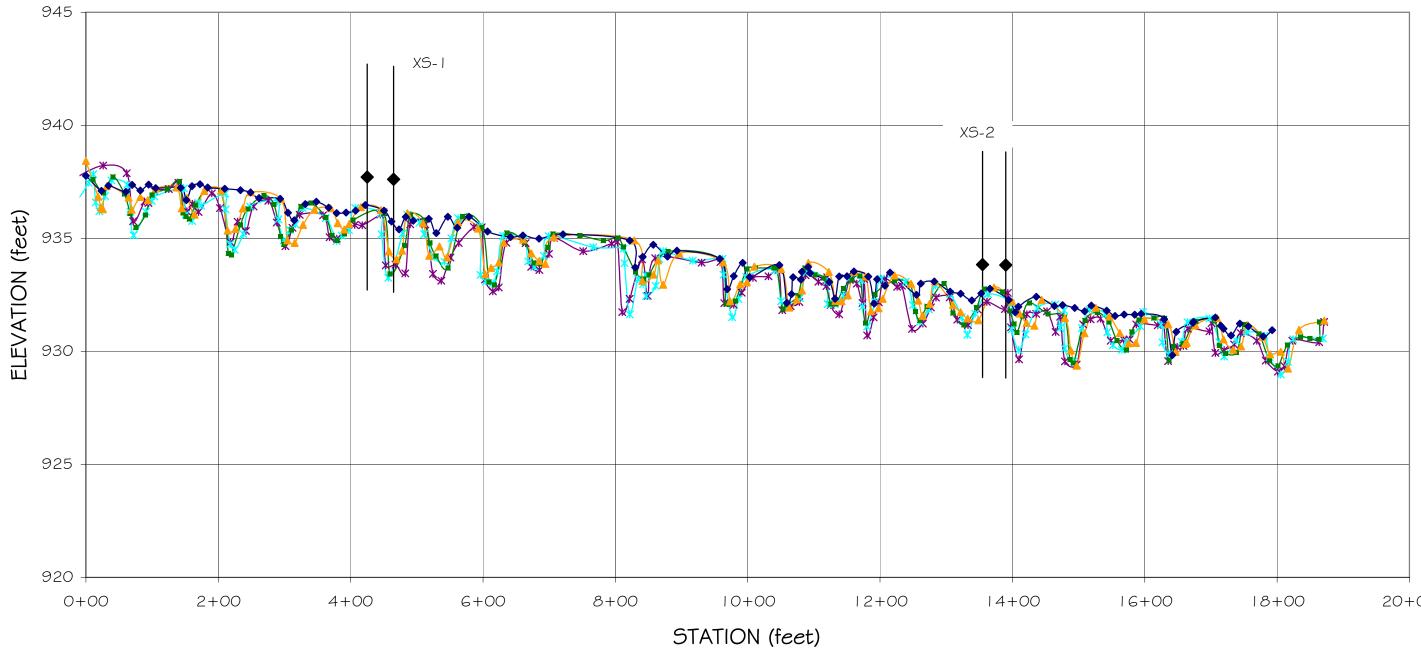






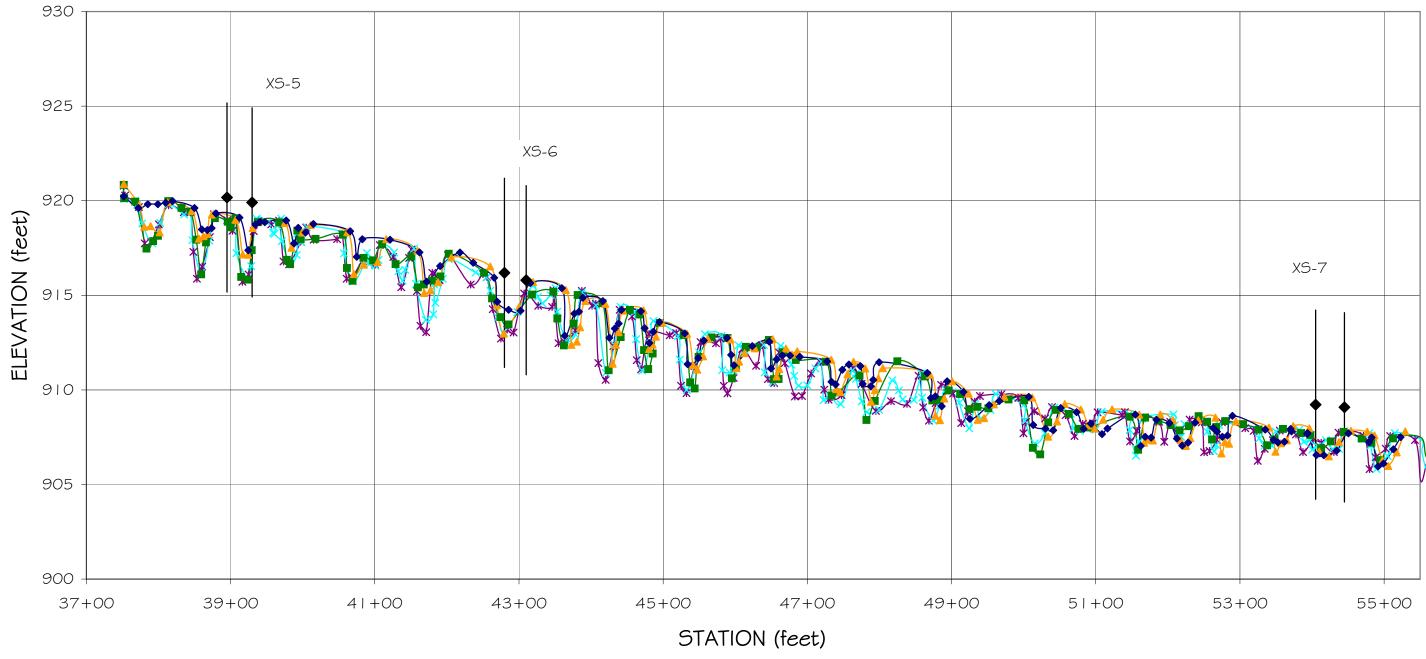

── Year 4 ── Year 3 ─■ Year 2 ─▲ Year 1 ─◆ As Built


GRAY FARM STREAM RESTORATION REACH 1 - CROSS-SECTION 7 (POOL) (STA. 54+45)

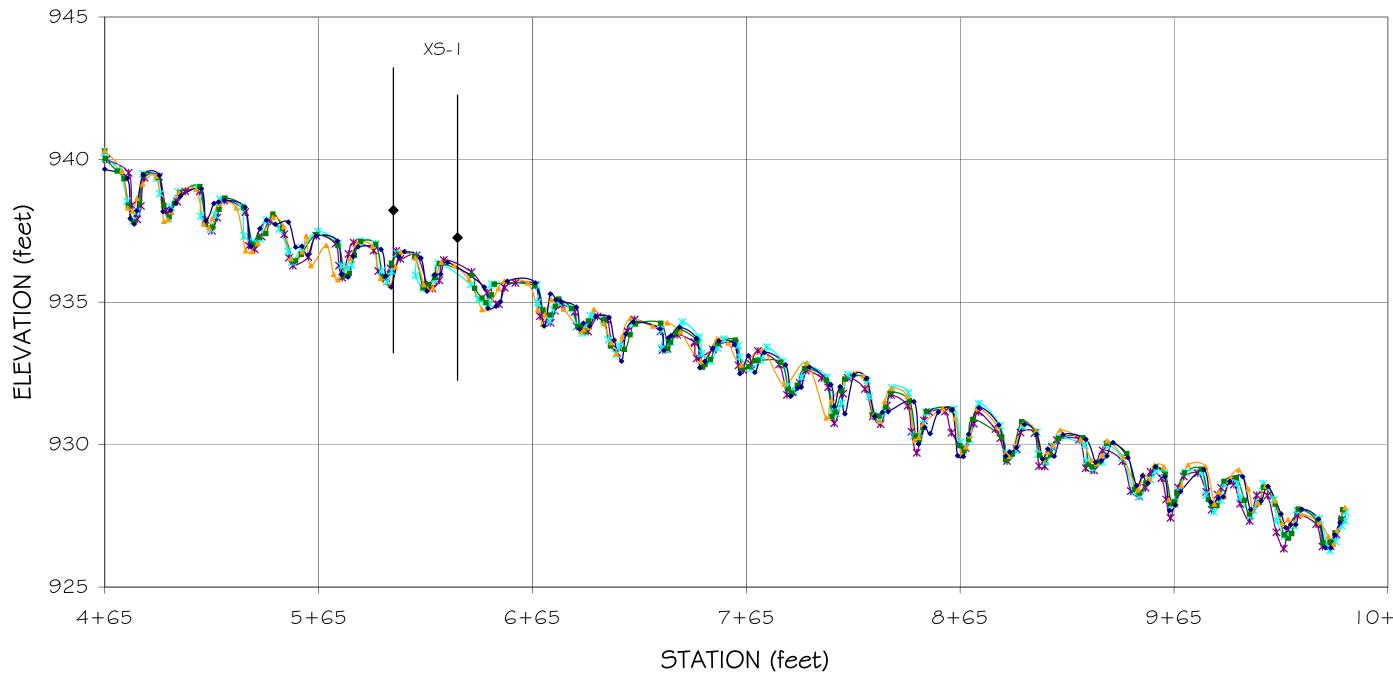


APPENDIX B.7 –

Annual Overlays of Longitudinal Plots

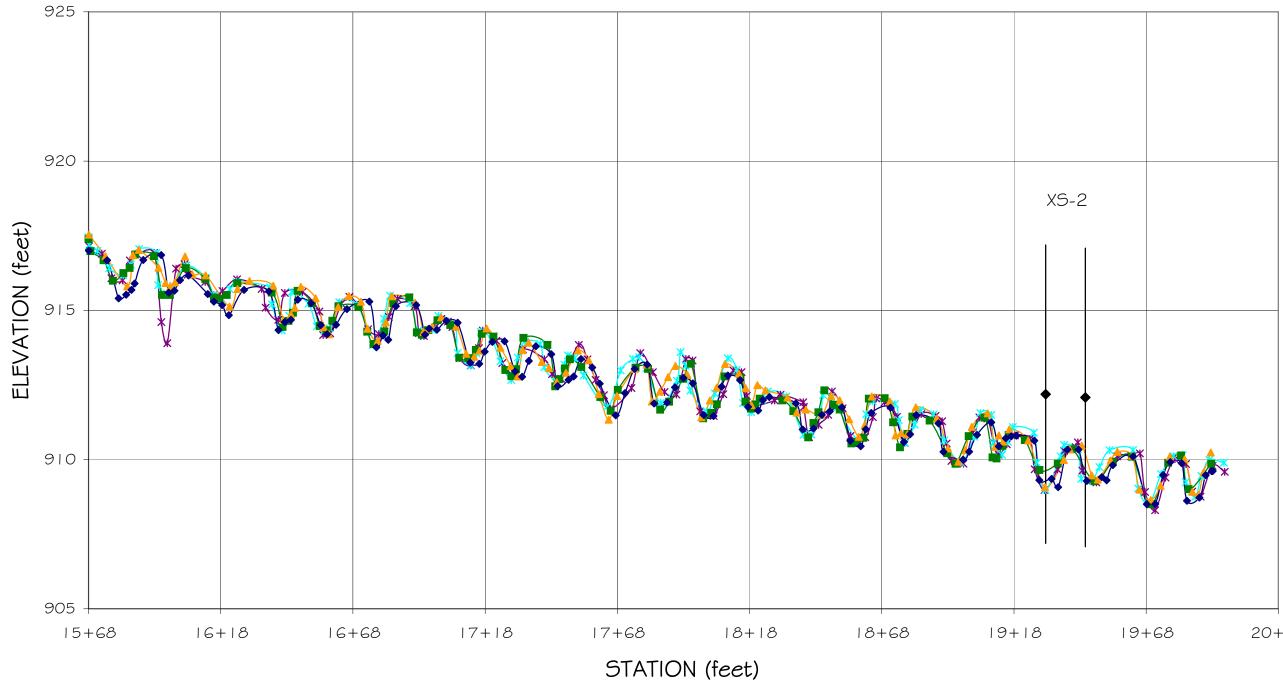

GRAY FARM STREAM RESTORATION REACH I - LONGITUDINAL PROFILE (STA. 0+00 TO 18+70)

→ Year 4 → Year 3 → Year 2 → Year I → As-Built ♦ XS


20+00

GRAY FARM STREAM RESTORATION REACH I - LONGITUDINAL PROFILE (STA. 37+50 TO 55+50)

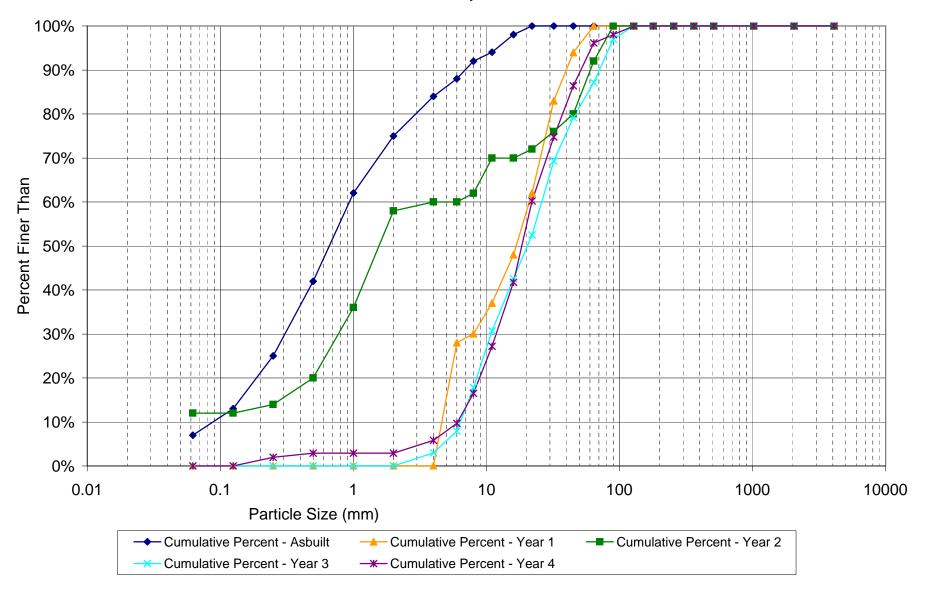
→ Year 4 → Year 3 → Year 2 → Year 1 → As-Built ♦ XS

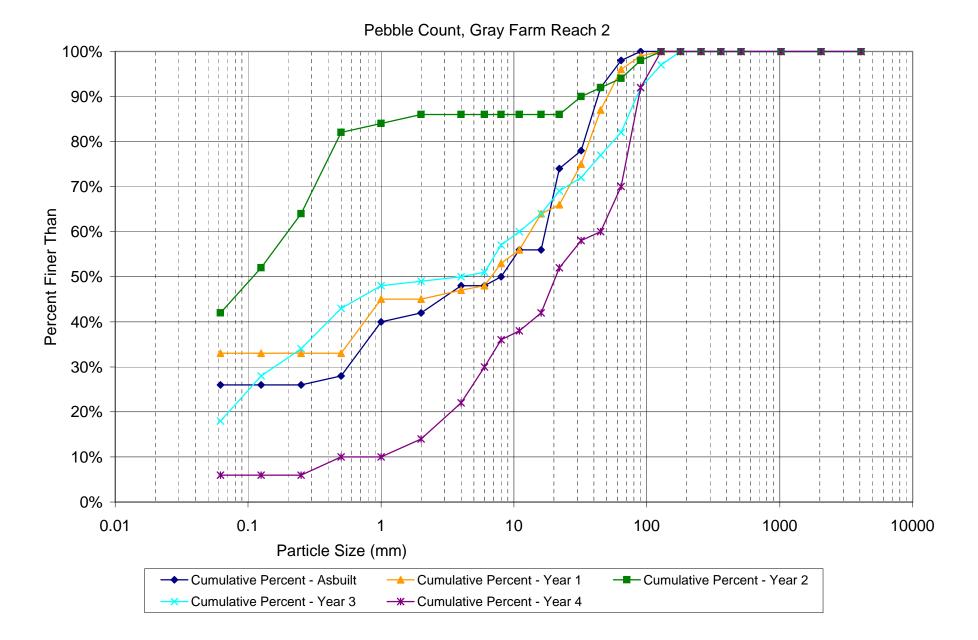

GRAY FARM STREAM RESTORATION REACH 2 - LONGITUDINAL PROFILE (STA. 4+65 TO 10+65)

★ Year 4 ★ Year 3 + Year 2 + Year 1 + As-Built ♦ XS

10+65

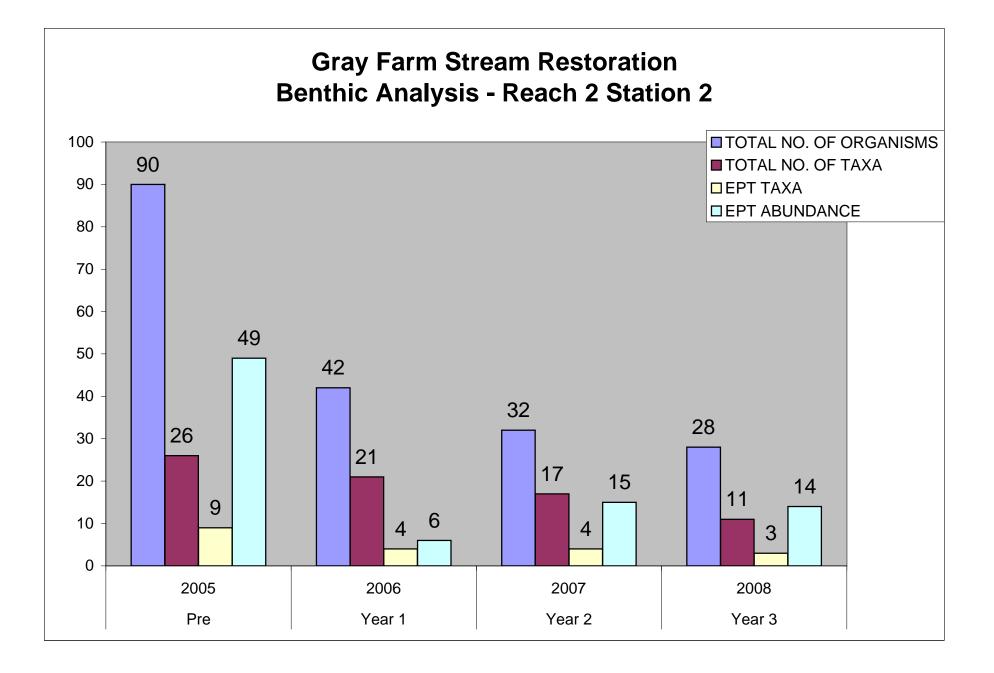
GRAY FARM STREAM RESTORATION REACH 2 - LONGITUDINAL PROFILE (STA. 15+68 TO 20+18)

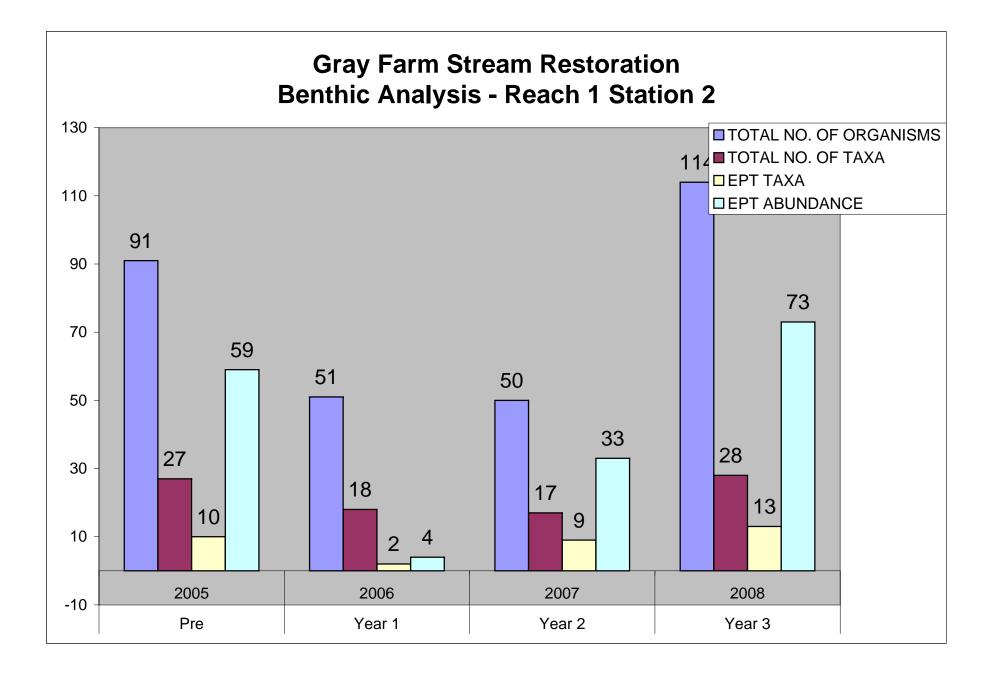

🛶 Year 4 🛶 Year 3 🗕 Year 2 📥 Year 1 🔶 As-Built 🔶 XS

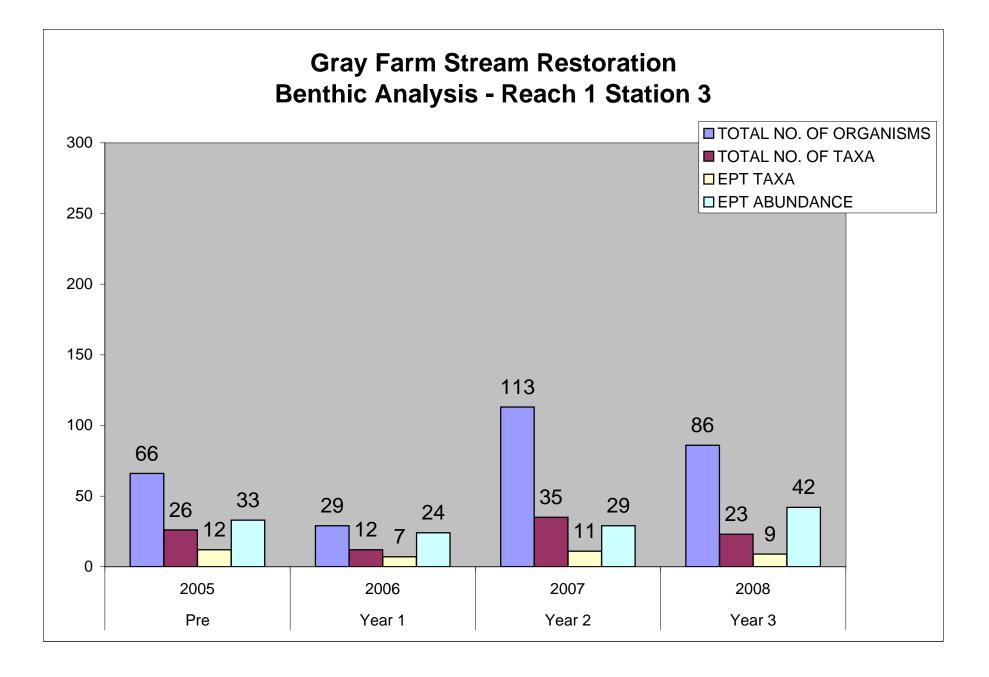

20+18

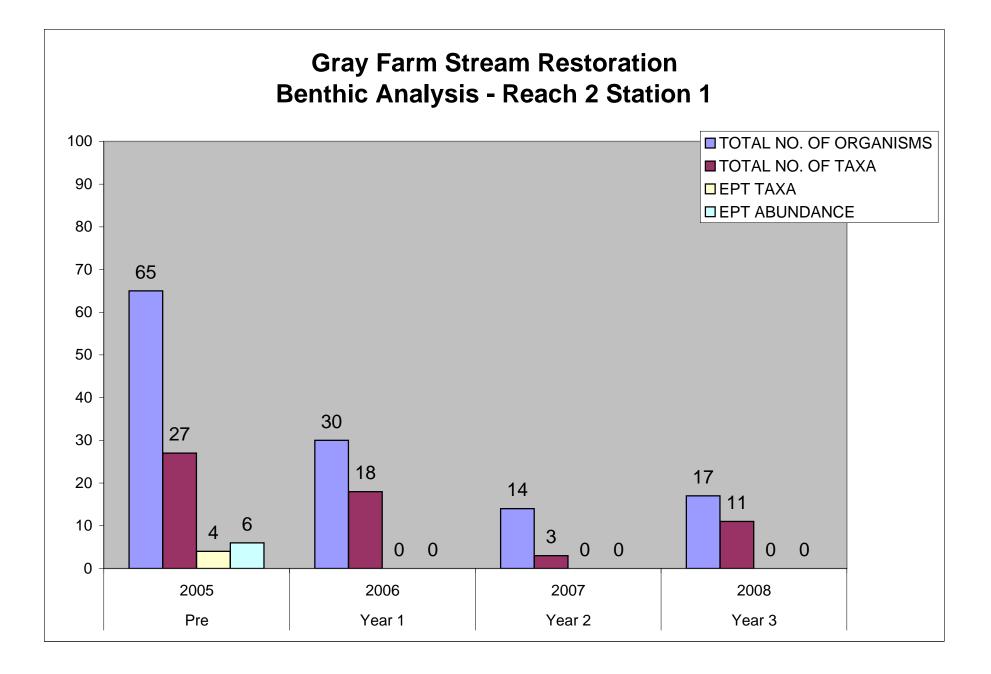
APPENDIX B.8 –

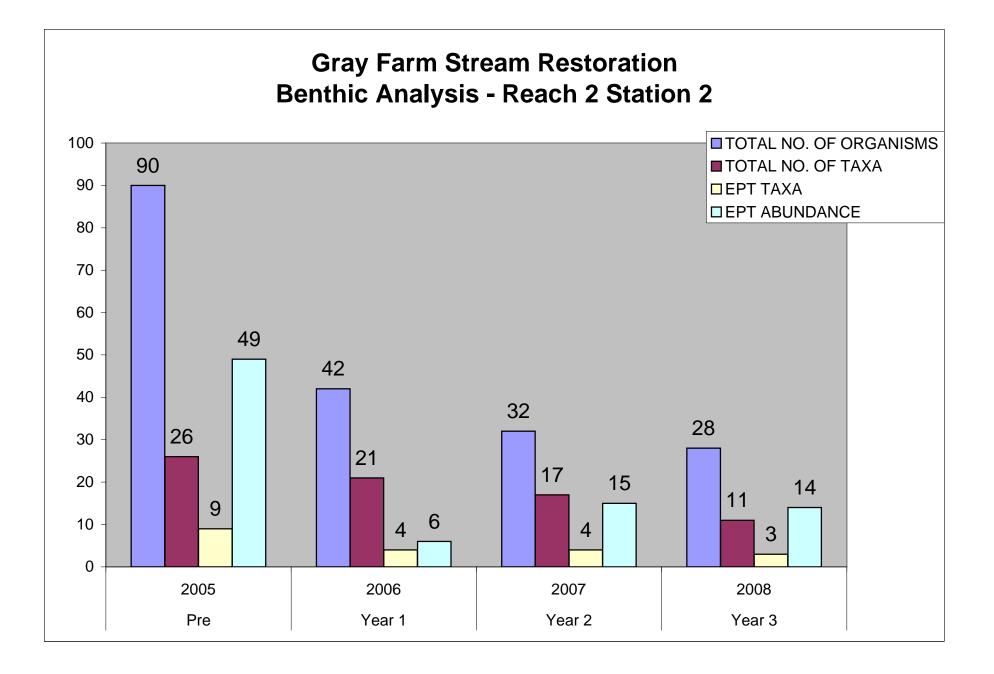
Annual Overlays of Pebble Count Frequency Distribution Plots


Pebble Count, Gray Farm Reach 1





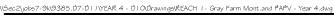

APPENDIX C


BENTHIC MACROINVERTEBRATE ASSESSMENT DATA

			REACH 1 STATION 1 UPSTREAM OF REACH 1		REACH 1 STATION 2 REACH 1 STATION 3 WITHIN RESTORATION REACH DOWNSTREAM OF REST. REACH					REACH	WIT	REACH 2 HIN RESTO	STATION 1 RATION RE	ACH	REACH 2 STATION 2 DOWNSTREAM OF REST. REACH					
		Pre	Year 1 Year 2	Year 3	Pre	Year 1	Year 2	Year 3	Pre	Year 1	Year 2	Year 3	Pre	Year 1	Year 2	Year 3	Pre	Year 1	Year 2	Year 3
SPECIES	FFG	2005	2006 2007	2008	2005	2006	2007	2008	2005	2006	2007	2008	2005	2006	2007	2008	2005	2006	2007	2008
PLATYHELMINTHES Turbellaria		0		1	0				0				0				0			
Tricladida Planariidae		0			0				0				0				0			
Cura foremanii MOLLUSCA		0			0			10	0				0				1			
Bivalvia Veneroida		0			0				0				0				0			
Sphaeriidae Pisidium sp.	FC FC	0 3	3	10	0				0				0				0			
Gastropoda Basommatophora																				
Physidae Physa sp.						3														
Physella sp. Planorbidae				3		-					1									
Micromenetus dilatatus						1														
Ancylidae Lymnaeidae																				
Fossaria sp. ANNELIDA		0	1		0				0				0				0			
Oligochaeta Chaetogaster sp.	CG	0			0				0				0	1			0			
Tubificidae Tubificidae w.h.c.		0		10	0				0				0				0			
Quistadrilus multisetosus Lumbriculida			1																	
Lumbriculidae Naididae	CG	0		1	0		1	1	0				0				0		1	
Nais sp. Pristina leidyi	CG	0						1					1				0			
W/O Cap Setae		0		_	0				0								, v	1		
Limnodrilus hoffmeisteri ARTHROPODA		0		3	0				0				Ö				0			
Arachnoidea Acariformes		0			0			1	0				0	<u> </u>			0			
Lebertiidae Lebertia sp.		0	\vdash		0	<u> </u>			0	_			0	-			0	\square		
Crustacea Asellidae			+																	
Caecidotea communis Copepoda			3												-					
Cyclopoida																1				3
Isopoda Asellidae				_										<u> </u>						
Caecidotea sp. Amphipoda			3	3																1
Crangonyctidae Crangonyx sp.											1									
Hyalella sp. Decapoda			3	_																
Cambaridae Cambarus sp.																1				
Insecta Ephemeroptera		0			0				0				0				0			
Baetidae Baetis sp.	CG CG	0 0			0				3		1		0 0				1			<u> </u>
Baetis flavistriga		Ŭ			· ·			1	Ū		1		Ů				0			
Baetis pluto Baetis tricaudatis								3												
Centroptilum sp. Baetiscidae	CG	0			0		3		0		1		0				0			
Baetisca carolina Caenidae		0		_	1		1		3				0				0			
Caenis sp. Ephemerellidae	sc	0			0	1			0			3	0				0			
Ephemerella sp. Eurylophella sp.	SC	0	1		10		1	10	1		1		0				0			
Heptageniidae Maccaffertium (Stenonema) sp.	SC SC	0			0 10		10	10	0 3		10		0				0 10		1	
Maccaffertium (Stenonema) modestum Stenonema carlsoni	SC	ō			10				10	10		10	Ó				3	1		
Stenacron interpunctatum Stenacron pallidum	SC	0			0				1	1	1	1	0				0	-		
Isonychiidae					Ů			10	· ·				0				0			
Isonychia sp. Leptophlebiidae	CG	0			0			10	0				0				0	1		
Leptophlebia sp. Paraleptophlebia sp.	CG	0			0				1				3				1		1	3
Odonata Aeshnidae	Р	0			0				0				0				0			
Boyeria vinosa Calopterygidae	P	0			1				0				0				0			
Calopteryx sp. Coenagrionidae	Р	3			0				0				3				0			
Ischnura sp. Gomphidae	Р	0			0	1			0		1		0			3	0			
Lanthus sp. Ophiogomphus sp.	P	0			0		1	1	1				0				0			
Libellulidae Plathemis Ivdia													-	3		9				——
Plecoptera Capniidae	ян	0			0 10				0		10		0	—		3	0 10			
Allocapnia sp. Perlidae	SH P	0	3 1		0		3	10	0	3	10	10	0				1	3	10	10
Eccoptura xanthenes	P P	0			1		1	1	0				0	L			0			
Periodidae Isoperia sp.	P	0	1		3			1	0				0				0			
Taeniopterygidae Hemiptera		0			0				0		1		0				0			
Corixidae Sigara sp.		0			0	1			0				0]	0 1	1		3
Veliidae Microvelia sp.	P P																	\square	-	
Megaloptera Corydalidae	Р	0			0				0				0				0			
Chauliodes rastricornis Corydalus cornutus								1						L		1				<u> </u>
Nigronia fasciatus Nigronia serricornis	Р	0			0			<u> </u>	0				0	<u> </u>			1			
Trichoptera		0			0				0				0				0			
Hydropsychidae Cheumatopsyche sp.	FC FC	0		1	0		3	3	0	3	1	3	0				0			
Diplectrona modesta Hydropsyche betteni gp.	FC FC	0			0	3	10	10	0 3	3		3	1	E			10 0			
Hydropsyche sp. Limnephilidae				_1				3						E-	E-					
Pycnopsyche sp. Philopotamidae	FC	0			0				0				0				0	1	3	
Chimarra aterrima Dolophilodes sp.	FC FC	0			3		1	10	3	3	1	10	0	<u> </u>			10 0			
Dolopnilodes sp. Psychomylidae Lype diversa										1										——
Rhyacophilidae										1										
Rhyacophila sp. Uenoidae											1									
Neophylax sp. Coleoptera		0			0				0				0]	0			1
Dryopidae Helichus sp.		0			0				0				0				0	1		
Helichus fastigiatus Dytiscidae	SC P	0	\vdash		0	<u> </u>			0	_			1	-			0	\square		
		-																		-

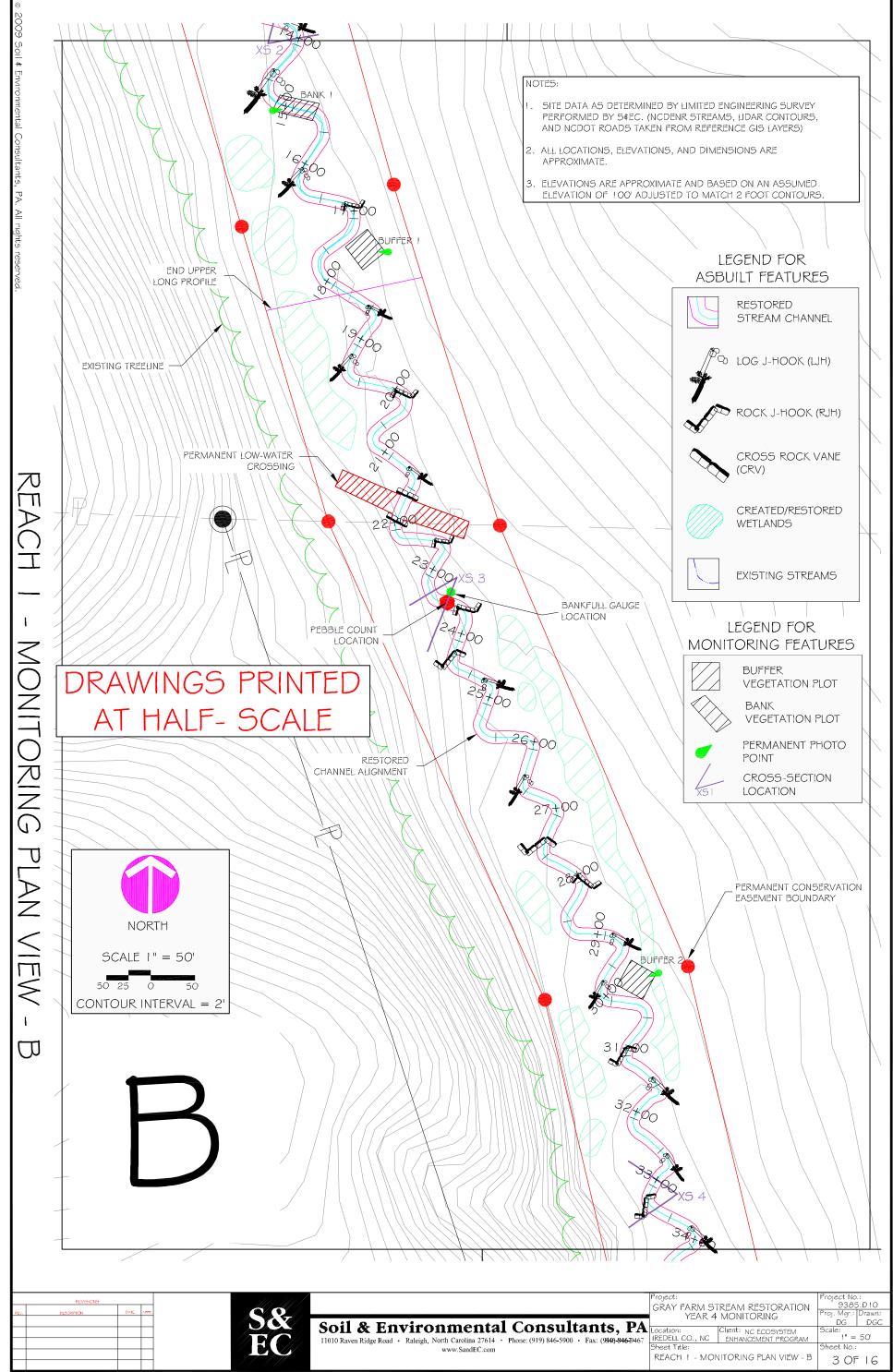
Acilius sp.					- 1				_								1			1	
Agabus sp.	Р	0			1	0				0				3	3		1	0			
Hydroporus sp.	PI	0				0				0				0				1			
Neoporus sp.				1													3			1	1
Elmidae	CG	0				0				0				0				0			
Oulimnius latiusculus Helophoridae	CG	0				1				0			1	0				0			
Helophorus linearis		ő				0				0				1				0			
Hydrophilidae		0				0	-		_					3				0			
Psephenidae	sc	ŏ				ŏ				0				ŏ				ŏ			
	SC	ō				ō				10	1			0				0			
Ptilodactylidae	SH	Ó				0				0				0				0			
Anchytarsus bicolor	SH	0				0				0	1			1				1	1	1	
Scirtidae	SC	0				0				0				3				0			
Diptera		0				0			_	0				0				0			
Ceratopogonidae	Р	0				1			1	0				0				0			
Bezzia/Palpomyia sp. Chaboridae	Р	0				0				0				0	1			3			
Chabondae Chaborus punctipennis																	1				
Chironomidae		0				0				0		3		0				0			
Brillia flavifrons	SH	ŏ				0	-			1		Ŭ	1	ō				0			
Chaetocladius sp.	CG	ō				1				0				0				0			
Chironomus sp.	CG	1		1	3	0				0				0			1	0			
Clinotanypus sp.							1														
Conchapelopia sp.	Р	0		1		0			1	1		1	1	3				0		1	
	CG	3				10				3		10	10	3				10		1	
	CG	0				1		10		3		10		1				1			
Cricotopus bicinctus Diamesa sp.			<u>├</u>					1	1		-	4									
Diplocladius sp.			3																1		
Diplocladius sp. Diplocladius cultriger	CG	0		1		1	-	1	3	0		10	10	0				1		3	
Endochironomus sp.									-								_			1	
Eukiefferiella claripennis gp.	CG	0				3		1		0				0				0			
Heterotrissocladius marcidus gr.																			3		
Kiefferulus sp.			L				L								1						
Microtendipes pedellus gp.	CG	0	├ ──┤			0	3			1		1		0				1	5		
Natarsia sp. Odontomesa sp.								-							1				3		
Orthocladius sp.			1			-		1		-		1		-				_			
Parachaetocladius sp.												1								1	
	CG	0				1				0				0				0			
	CG	3	1	1		o i	1		10	ō	1	10	3	10	3			ō			
Paraphaenocladius sp.															3						
	CG	1				0				0				0				0			
Pentaneurini						_								_	1						
Polypedilum aviceps			1			_			_	-			1	-				_			
Polypedilum fallax gr. Polypedilum flavum (convictum)	ян	3	1			3	-			3		1		0				10			
	SH	1				0				0				1				0			
Polypedilum illinoense	0	· ·				Ŭ				0		1	1	· ·				Ū			
Polypedilum sp.							10														
Polypedilum tritum															1						
Procladius sp.				1											1						
Psectrotanypus sp.					3										1						
Rheocricotopus robacki	CG	0				1	40			1				0				0			
Rheotanytarsus exiguus gr. Rheotanytarsus sp.	FC	1	1			0	10			0		3		0				0			
Stilocladius clinopecten	FC	ó				1				ő				0				0			
Stictochironomus devinctus	CG	ő		3		o				1				o				ő			
Stictochironomus sp.		Ŭ	3	Ū		Ŭ								Ŭ				Ū	1		
Tanytarsus sp.	FC	3		3		0	1			0		3	3	3	1			0			
Thienemanniella sp.							1														
	CG	1				3	L		3	3		10	3	1				1			
Thienemannimyia gr. sp.			10				10								3				1		
Tribelos jucundum Tudopia bavarica dp	ca 📗	0	1			0	1			0		1		1				0	10		1
Tvetenia bavarica gp. Tvetenia paucunca	CG	0	<u>├</u>			· ·	<u> </u>			0	-	4		0				0			
Zavrelimyia sp.	Р	1		1		0	-			0		- 1	3	1	1			1	1	3	
Culicidae	FC	Ó				0				1				0		10	1	0			
Aedes sp.												-			1					-	
Dixidae	CG	0				0	L			0				0				0			
Dixa sp.	CG	0		1		0				3				1				3			
Dixella sp. Empididae			├ ──┤					-												1	3
Emploidae Hemerodromia sp.			1				1		_												
Ptychopteridae		1				0				0				0				0			
Bittacomorpha clavipes		1				0				0				10				0			
Bittacomorpha sp.				6	1		1					1			1		-			-	
Ptychoptera sp.			1				1														
	FC FC	0	1			0	1			0	1	10		0				0			
	ru	U	1			U	1	-	3	U	1	1	3	U		-		1			
Syrphidae Tabanidae	PI	0	<u>├</u>			0				0				0		3		0	1		
	PI	0	1			0	-		_	ŏ				1				0	4		
Tipulidae	SH	ŏ	<u> </u>			ő	-			ŏ				ó			_	ŏ			
Antocha sp.		- i							1												
Dicranota sp.																			1	1	
Ormosia sp.							L												1	1	1
Pseudolimnophila sp.	P	1	3	1		0	 	L		0				3	3			0	3		
Tipula sp.	SH	0	3	1		1	L	1	3	1	1		3	3	L			3	1	1	1
TOTAL NO. OF ORGANISMS		30	45	28	40	91	51	50	114	66	29	113	86	65	30	14	17	90	42	32	28
TOTAL NO. OF TAXA		16	20	17		0 27	18	17	28	26	12	35	23	27	18	3	11	26	21	17	11
EPT TAXA		0	3	1		0 10	2	9	13 (7	11	9 0		0	0	0		4	4	3
EPT ABUNDANCE		0	5	1		0 59	4	33	73 (24	29	42 0		0	0	0		6	15	14
NC BIOTIC INDEX		6.64	6.7	7.06	7.87	4.95	6.8	6.1	4.64	5.07	5.2	5.94	5.24	6.88	8.8	N/A	9.11	4.62	6.1	4.49	5.02

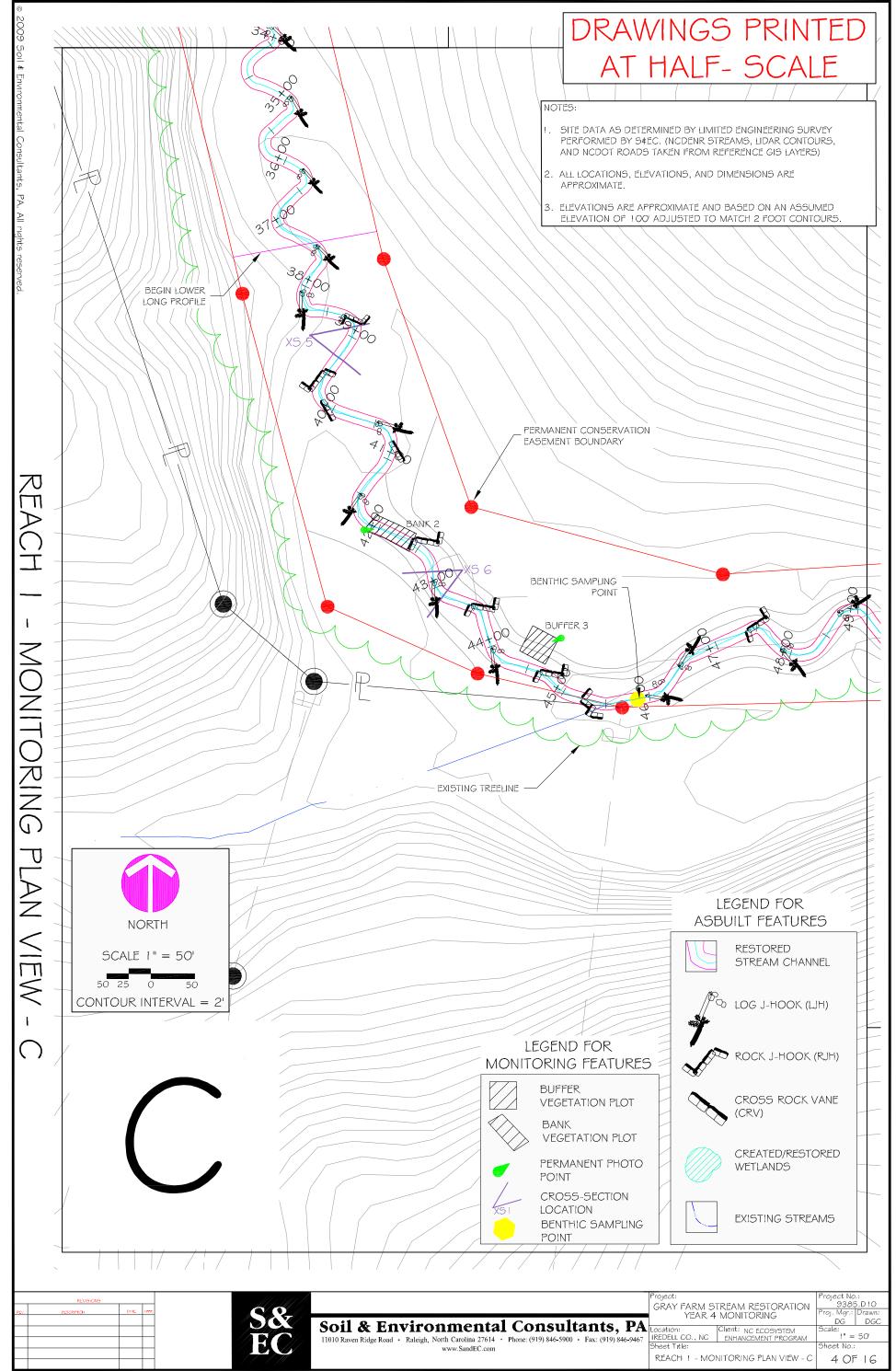

APPENDIX D

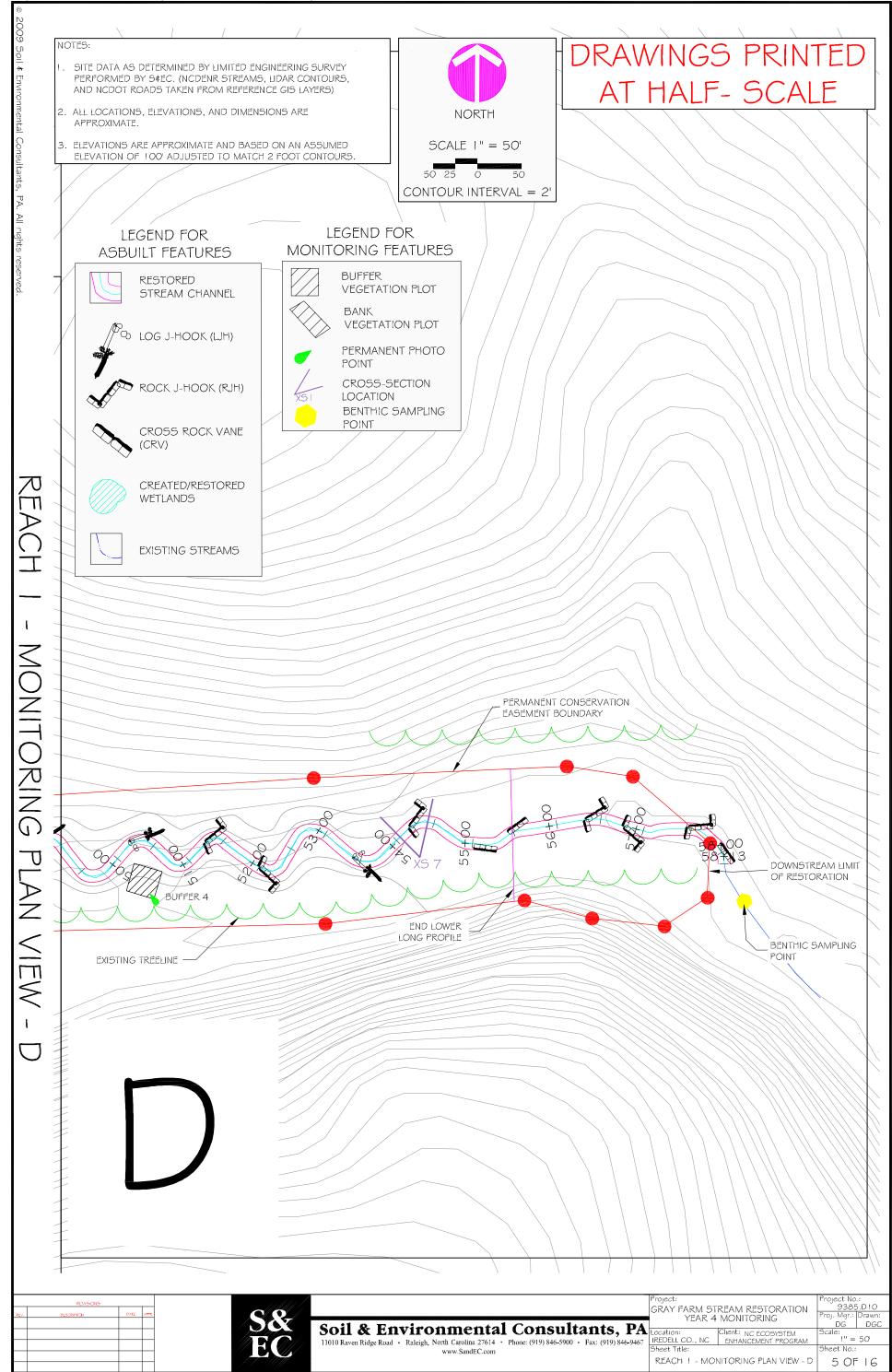

INTEGRATED PROBLEM AREA PLAN VIEW

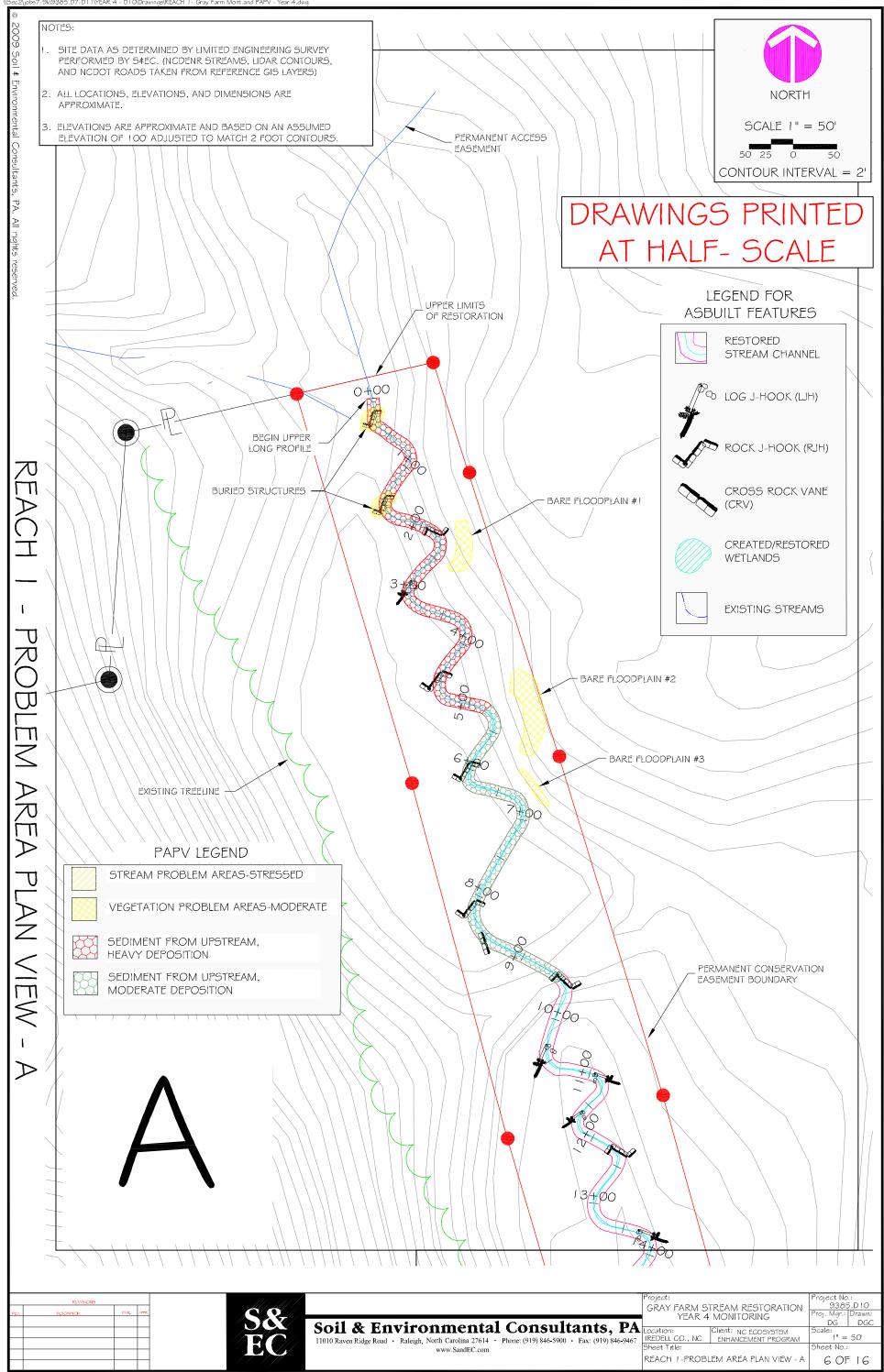
APPENDIX D.1 -

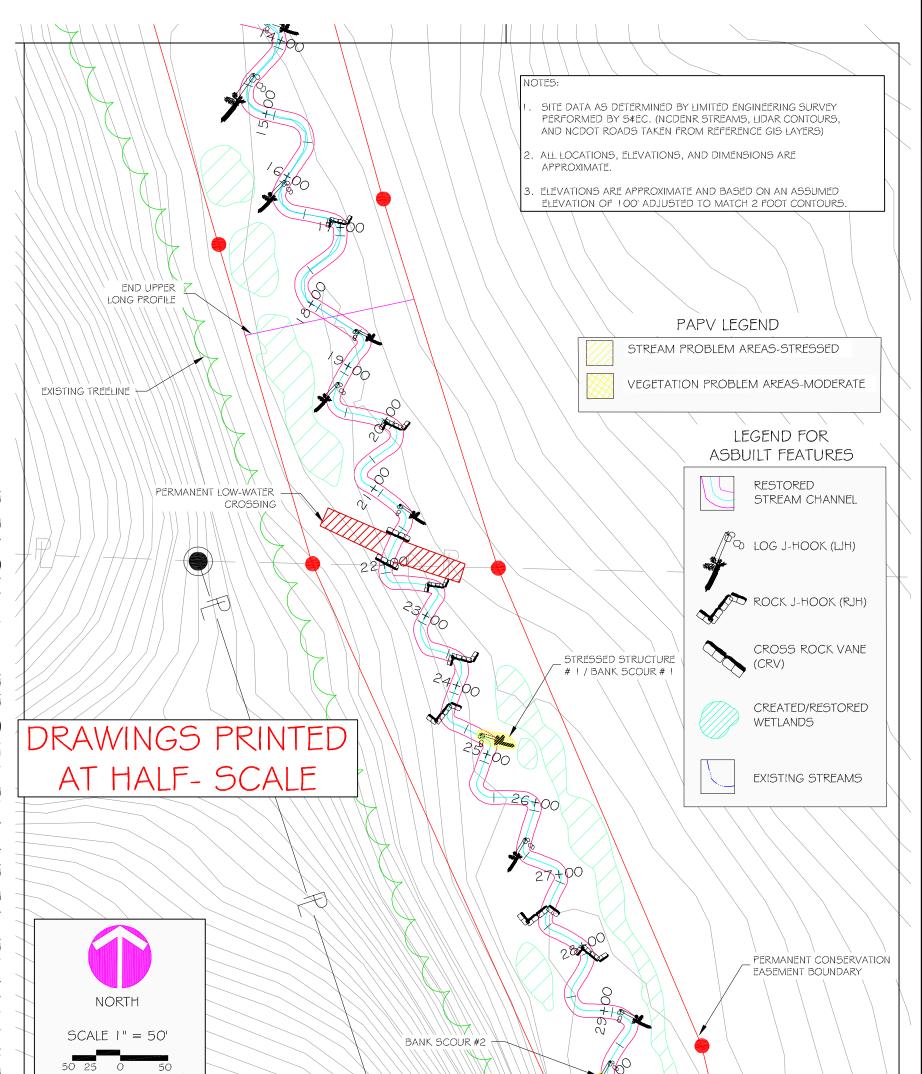
Monitoring and Problem Area Plan View, Reach 1

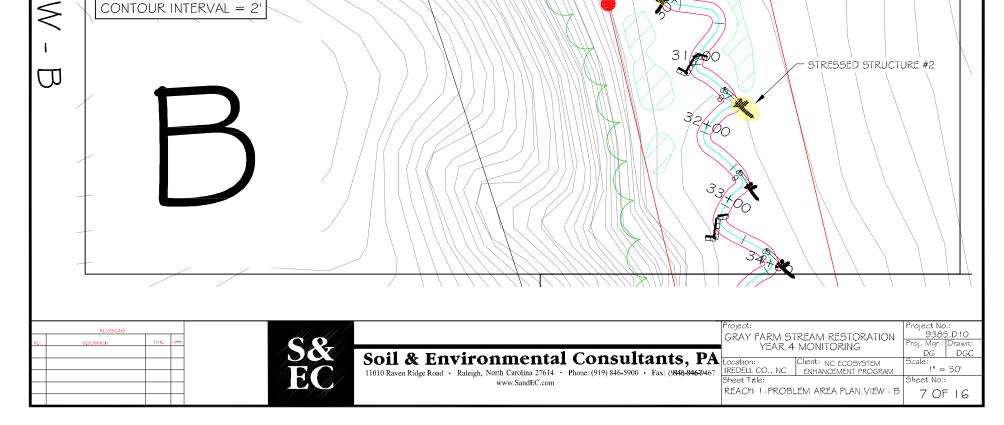


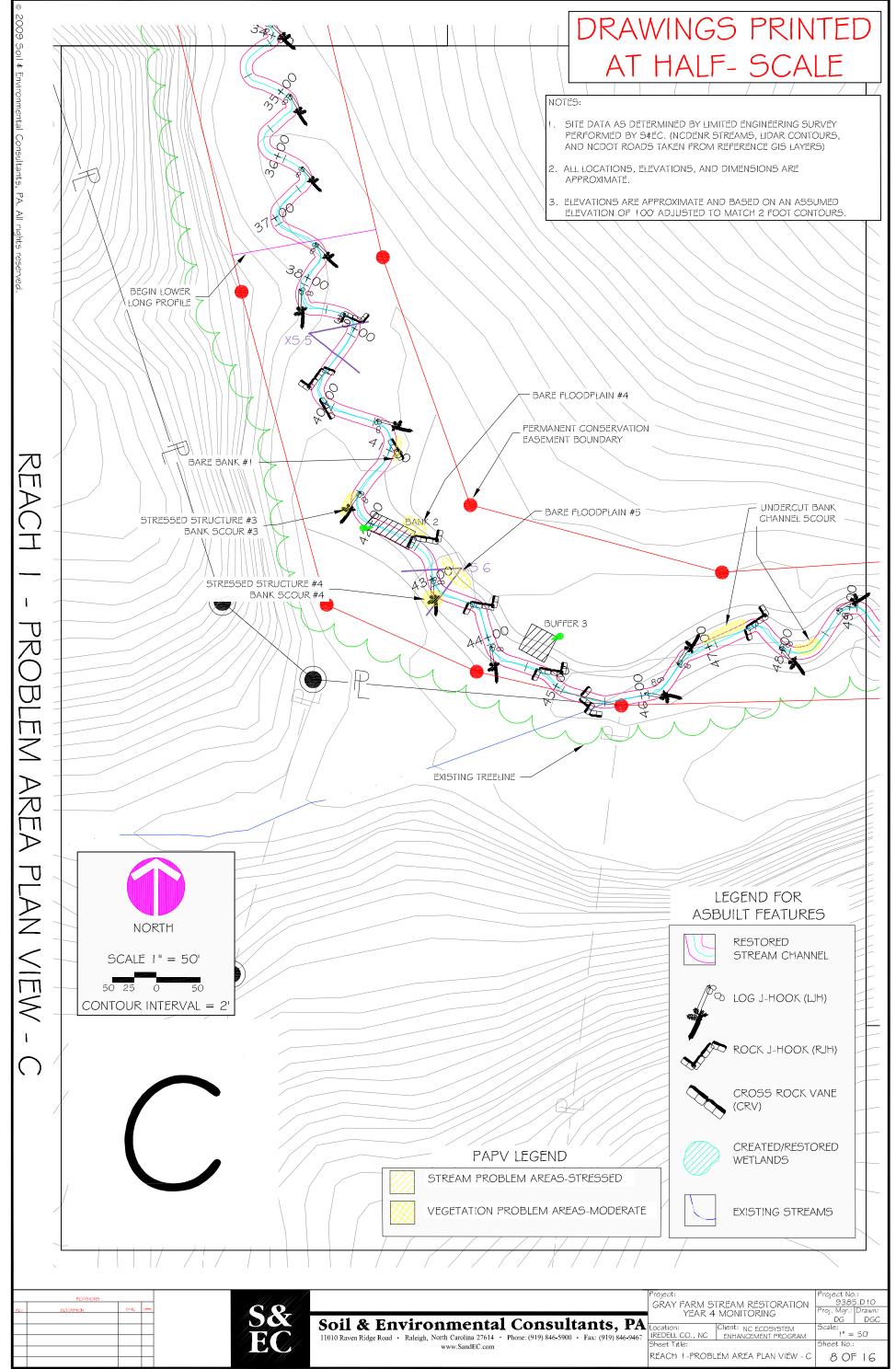


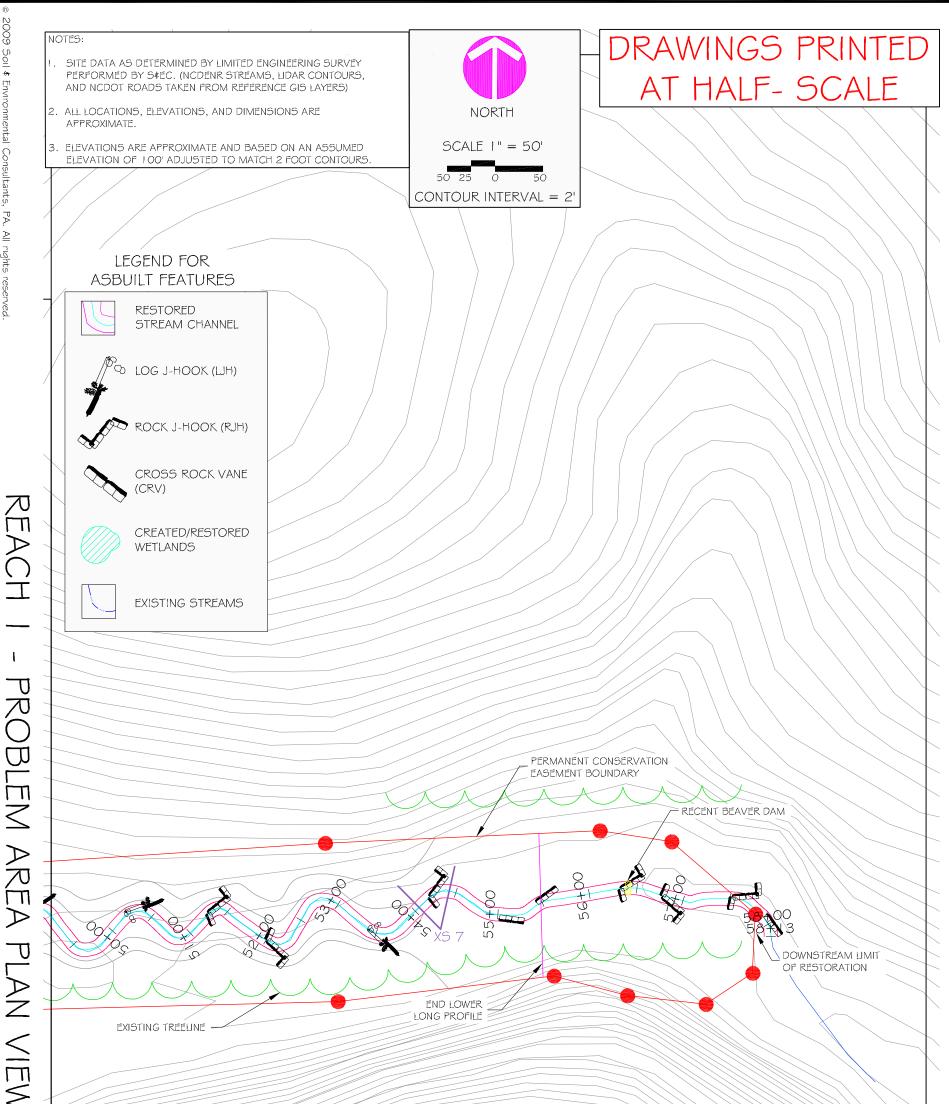


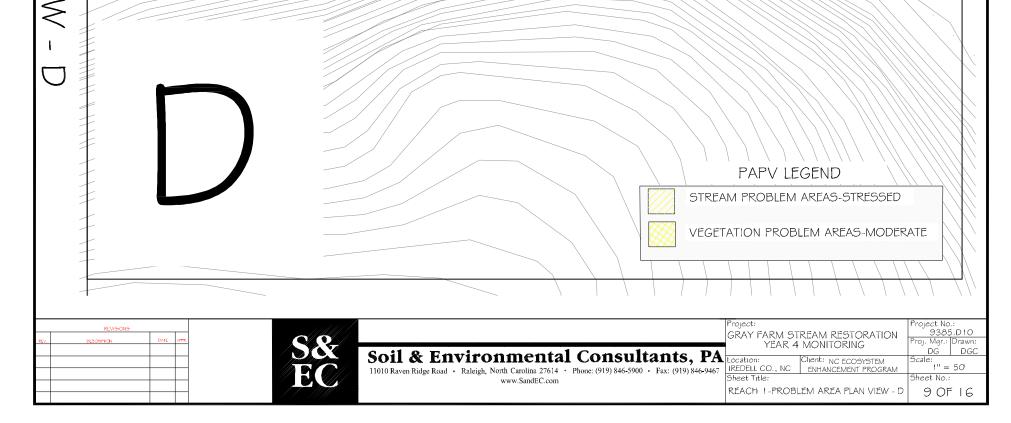


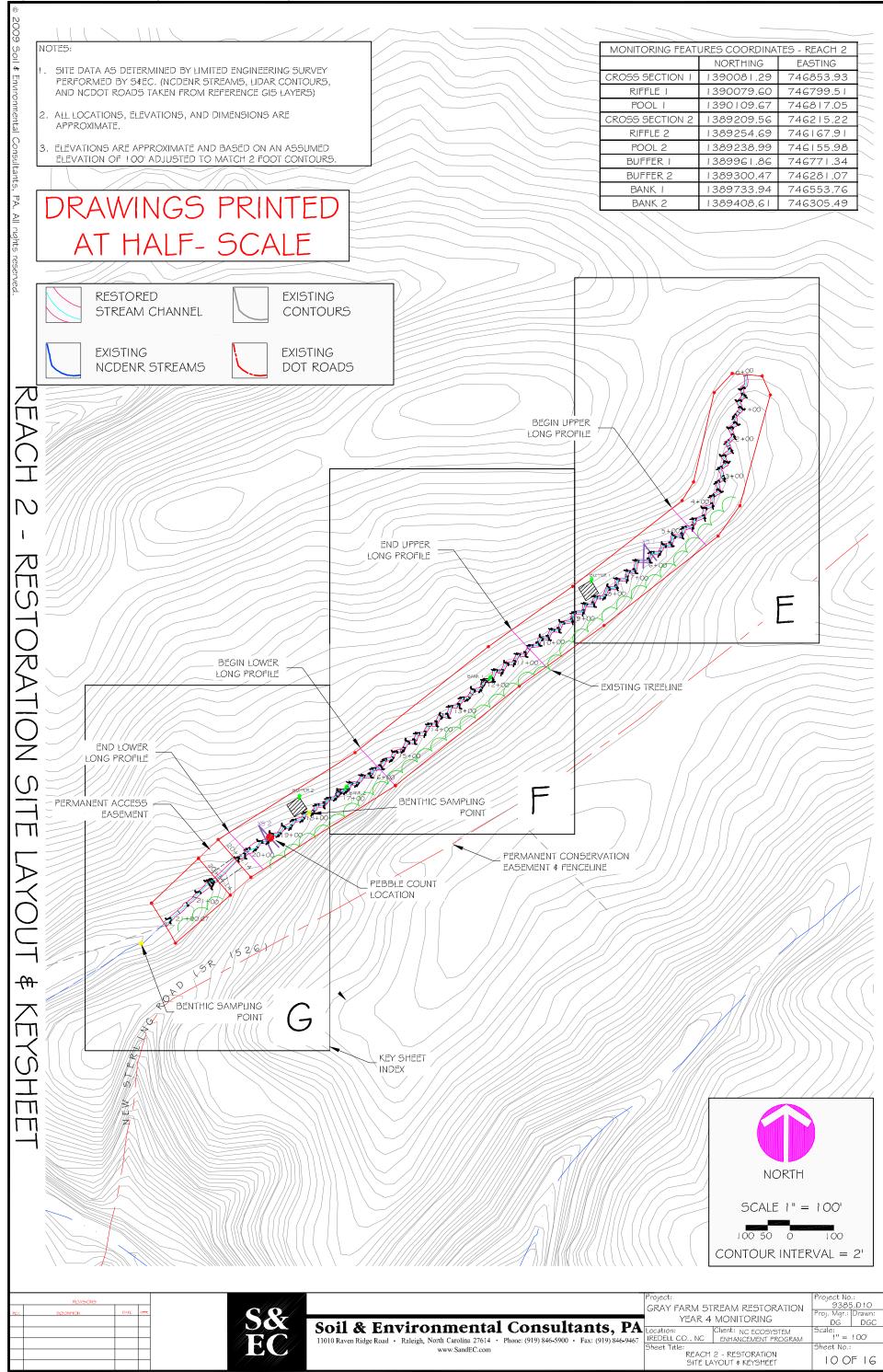


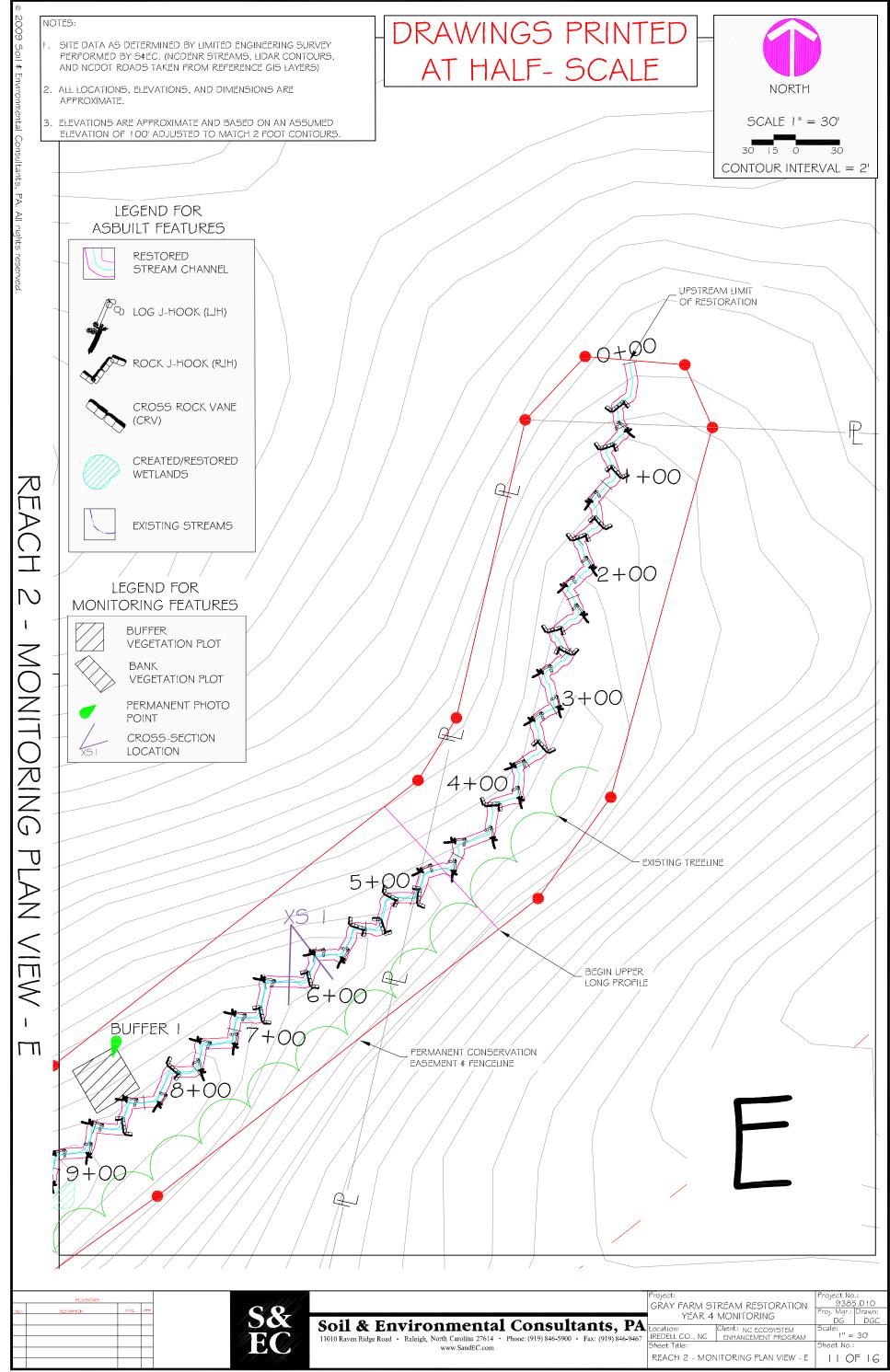


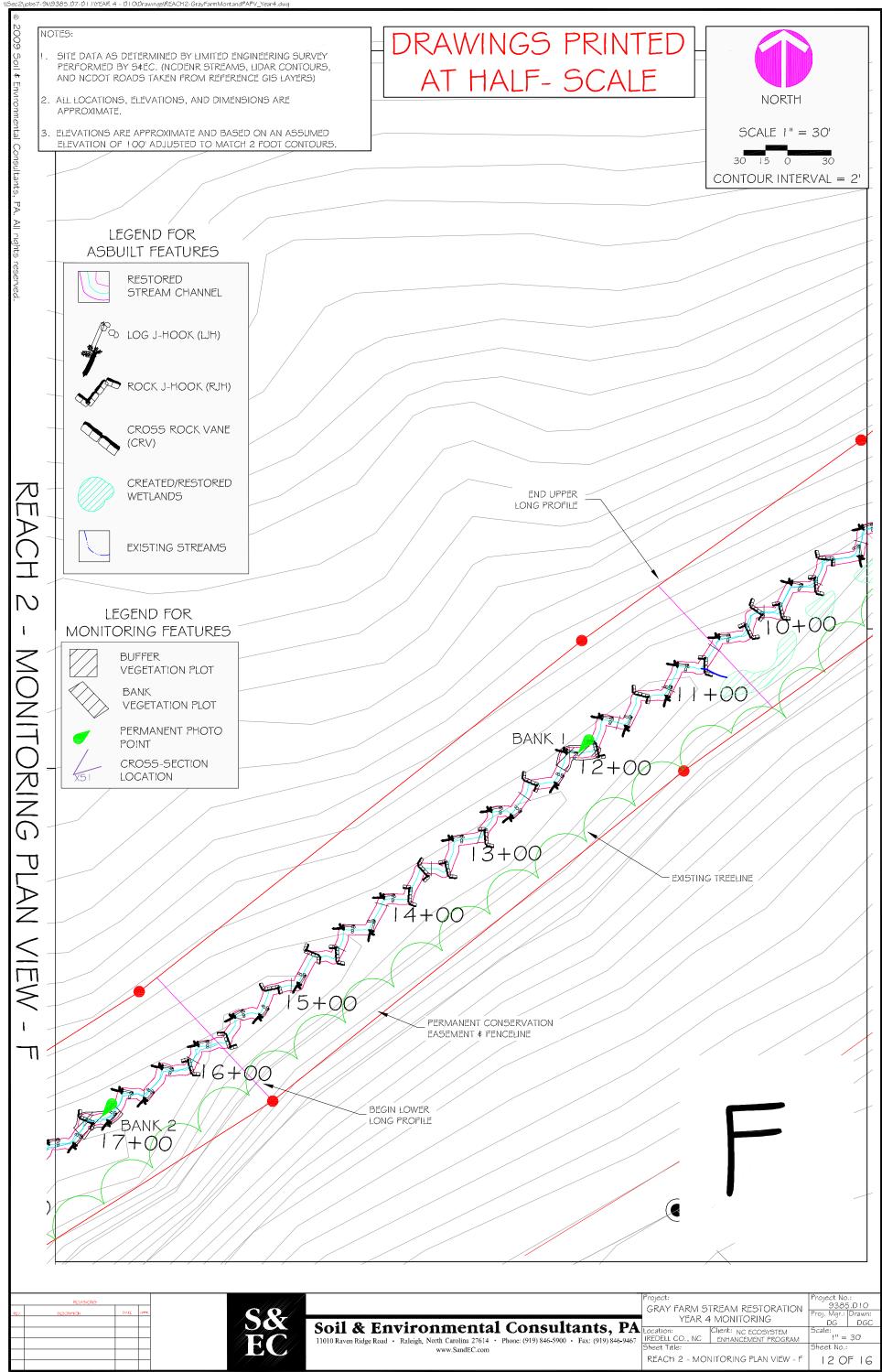


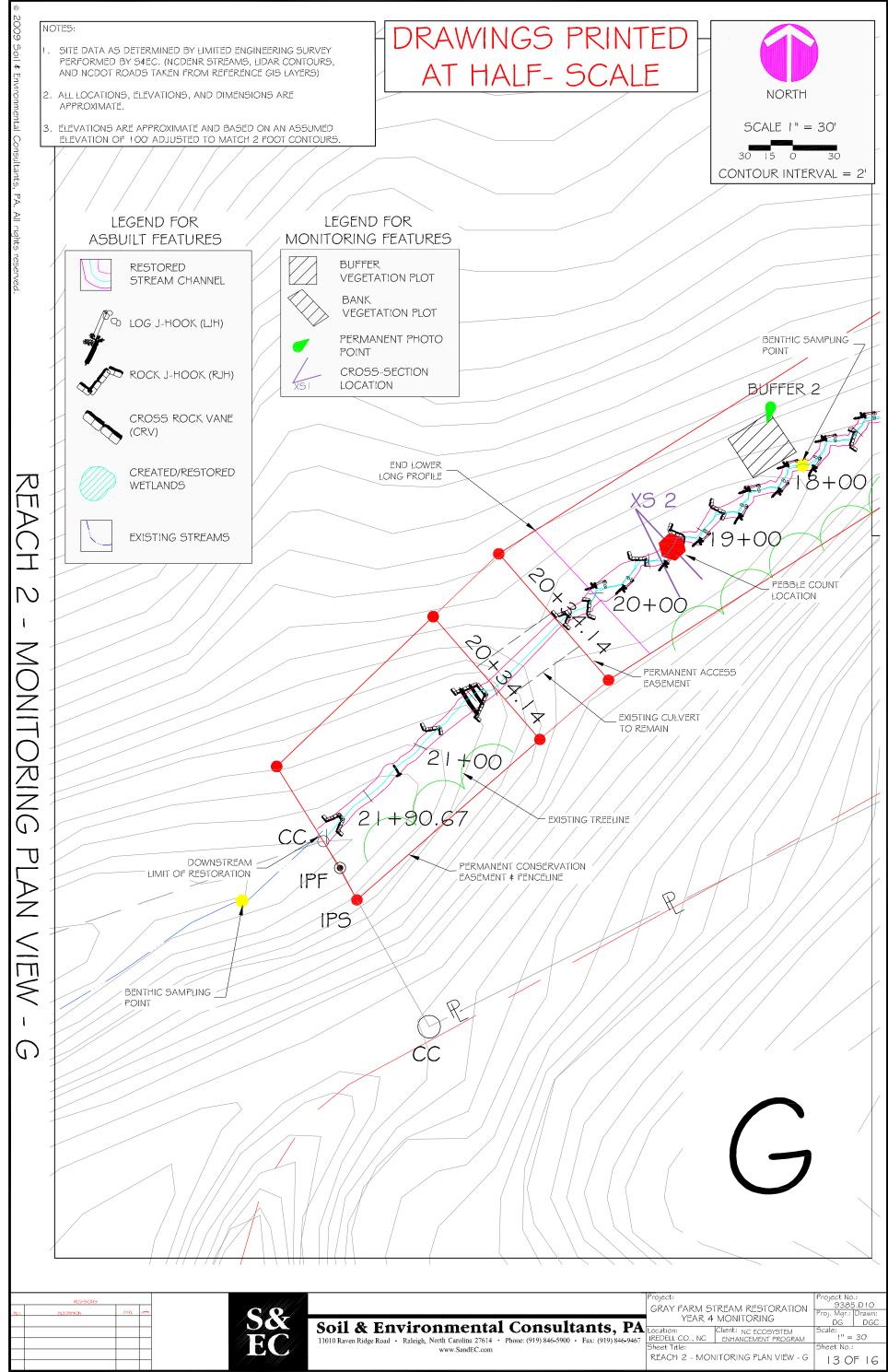


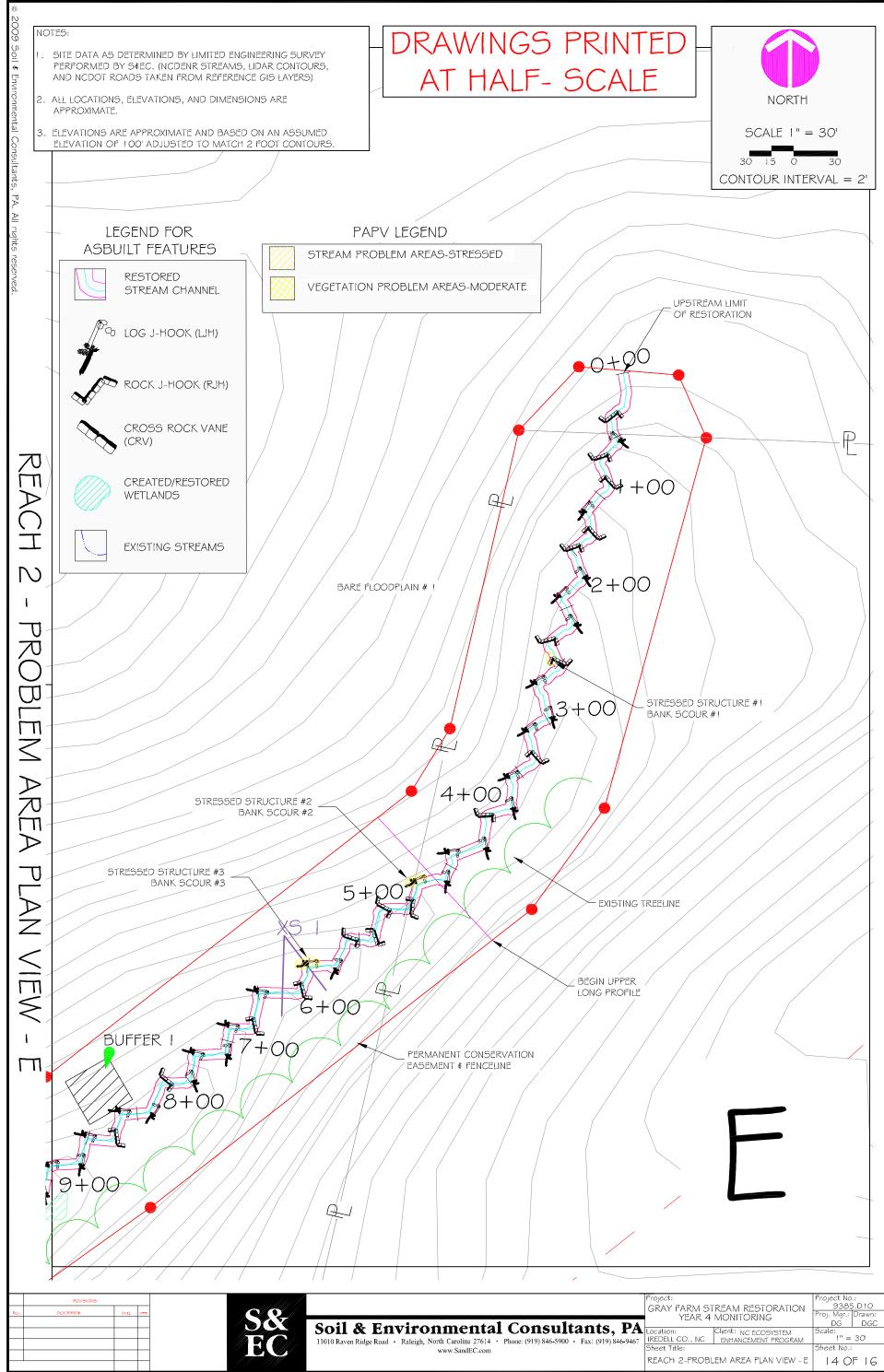

\Sec2\jobs7-9\\9385.D7-D]]\YEAR 4 - D]O\Drawings\REACH]- Gray Farm Mont.and PAPV - Year 4.dwg








APPENDIX D.2 -


Monitoring and Problem Area Plan View, Reach 2

